Category

Extension Education

Communication and Trust: Leverage Points for Extension in Innovation Adoption and Discontinuance Experiences for Greenhouse Growers

Carrie N. Baker, University of Florida, baker.carrie@ufl.edu

Kathleen D. Kelsey, University of Florida, kathleen.kelsey@ufl.edu

PDF Available

Abstract

This phenomenological study was underpinned by both value-belief-norm (VBN) and diffusion of innovations (DI) theories to explore the adoption/continuance experiences of three mid-size greenhouse growing operations with a new-to-market advanced growing system. We collected data using Rapid Evaluation and Assessment (REA) methods to understand growers’ adoption/rejection decision-making behaviors and explored factors that influenced their confirmation decisions of an advanced growing system that held the potential to significantly reduce production costs if adopted. We identified three themes (a) value alignment; (b) reliable hardware; and (c) software integrity that contributed to the phenomenological essence: Communication and trust: Leverage points in the software/hardware overlap. Our findings suggested that growers’ experiences and confirmation decisions were influenced by a lack of technological observability, reinforced by miscommunication and distrust in evidence and interactions with the change agent. We provide recommendations for practitioners such as horticultural Extension professionals, grant managers, inventors, product developers, and horticultural industry representatives, to facilitate information sharing and enhance transparency and accountability when diffusing an advanced growing system with greenhouse growers. Research to further explore change-agent role conflict and its impact on project adoption that engages growers and similar publics is needed to understand responsible, sustainable research and innovation diffusion.

Introduction and Theoretical Framework

Sustainable greenhouse management allows for optimized production and promotes innovative solutions for energy conservation, including the use of advanced growing systems (Saad et al., 2021). New systems and technologies are being developed to support resilient, climate-smart agri-food systems, with specific attention to supplemental lighting, automation, and remotely controlled systems (Nemali, 2022). As innovative products come on the market, there is a need to evaluate their performance and use-effectiveness and understand the role of Extension in supporting the diffusion of these technologies. Research evaluating the adoption of advanced growing systems within the greenhouse industry heavily focuses on technical improvements and benefits and has been aimed at providing estimates for energy use, resource conservation, and cost savings (Paris et al., 2022). However, there is a need for social evaluation of the adoption-continuance decision to understand early adopters’ adoption experiences and perceptions of the new technology to examine the diffusion capacity of advanced growing systems through networks of growers and other relevant stakeholders in agriculture and Extension.

This research study was underpinned by Rogers’ (2003) diffusion of innovations (DI) theory and Stern et al. (1999) value-belief-norm (VBN) theory of environmentalism (Stern, 2000) to explore growers’ innovation adoption decision process and the influence of pro-environmental beliefs and behaviors on decision-making. Social science scholars commonly apply DI theory to understand how innovations and novel technologies gain traction within a social system. Rogers (2003) proposed five perceived attributes that influenced innovation adoption. They are relative advantage, complexity, compatibility, observability, and trialability. These attributes impact individuals’ attitudes toward innovation and the decision-making process of adoption. Within our study, this included stages of knowledge (awareness of the new system), persuasion (attitude forming), decision (choice to participate in the project and adopt the system), implementation (active use and application of the innovation in greenhouses), and decision confirmation (feedback and assessment of decision to adopt). DI is a widely cited and appropriate theoretical framework for adoption, specifically in advanced growing systems (Gikunda et al., 2022; Moons et al., 2022). In our study, we examined a new-to-market advanced growing system that used automated sensor-based controls to measure, monitor, and adjust lighting based on individualized client needs to optimize plant production and conserve energy.

In addition to DI theory, we also applied Stern et al.’s (1999) value-belief-norm (VBN) theory to understand better how certain beliefs activate significant environmental behaviors and social movements (Stern, 2000). Stern defined environmentalism as “the propensity to take actions with pro-environmental intent” (p. 411). Industry experts and academics commonly apply this theory to examine the adoption of pro-environmental behaviors (Canlas & Karpudewan, 2023) inherent in designing the advanced growing system we examined. Behroozeh et al. (2023) used the facets of the VBN framework to understand growers’ motivations and intentions to conserve energy in greenhouse production systems. Applying DI and VBN theory, we aimed to explore growers’ perceived attributes of the advanced growing system and understand how pro-environmental beliefs may have influenced their participation in a project designed to introduce a new technology bundle to maximize greenhouse efficiency. Practical recommendations are presented to increase the adoption of similar innovations in future iterations.

Purpose

The purpose of this phenomenological research study was to explore (a) the innovation-decision process of mid-size greenhouse growers during the adoption of an advanced growing system; (b) examine how they perceived attributes of the innovation; and (c) if pro-environmental beliefs influenced their confirmation decisions. We were guided by the following question: What was the essence of growers’ adoption and confirmation decisions regarding the use of the advanced growing system in their operation?

Methods

Research Design

We sought to discover the essence of three greenhouse growers’ adoption experience of an advanced growing system technology bundle using phenomenological research design. Phenomenology is described as “the discovery of meanings and essences in knowledge” (Moustakas, 1994, p. 27) and is commonly applied to understand innovation adoption and technology use in agriculture (Mulvaney & Kelsey, 2020). Knowledge gained and innovation perceptions resulted from their conscious collective experience using the technology and working with the change agent (Moustakas, 1994). During the project, the business promoting the technology closed unexpectedly, causing an interruption in the adoption cycle. Therefore, the phenomenon of interest was the forced discontinuance and diffusion breakdown in the context of the business closure (McNall & Foster-Fishman, 2007; Moustakas, 1994). Given time constraints, rapid evaluation assessment (REA) methods allowed for more “rapid, cost effective, technically eclectic, and pragmatic” evaluation protocols (McNall & Foster-Fishman, 2007, p. 155). REA is widely recognized as an appropriate, trusted method among agricultural and Extension professionals, especially as it relates to adoption decisions (Comito et al., 2018; Halbleib & Dinsdale, 2023; Patton, 2002).

Population and Sampling

We used criterion-based sampling to purposively sample three greenhouse growers who opted to install a software and hardware technology bundle, demonstrated active/continued use of the system during the project, and remained in contact with the change agent. While 10 growers initially enrolled in the program to trial the growing system, only four met the criteria of active/continued use. We sent initial recruitment emails to those four growers to coordinate site visits. Three agreed to participate in the study. We conducted site visits in June and July 2023.

Data Collection and Analysis

We conducted site visits to three greenhouses and engaged the participants in a one-hour semi-structured interview (Patton, 2002). We analyzed growers’ websites to gain insight into their pro-environmental beliefs and behaviors. Interviews were transcribed verbatim using Otter.ai, anonymized, and sent to growers as a form of member checking (Fossey et al., 2002). Supplemental data included notes from participating in all project meetings, a research log with field notes, transcribed voice memos, and analytical and process memos for reflexive analysis and to establish an audit trail to support dependability (Annink, 2016). The log, a previous evaluation report, meeting notes, and grower profiles were used to triangulate findings and enhance credibility (Merriam & Tisdell, 2016). To analyze interviews and website content, we used Nvivo 12 Plus as an assistive tool. We used concept and a priori coding as a first-round method (Saldaña, 2021). Concept coding was used to identify words or phrases that represented common grand concepts. A priori coding was used to identify theoretical incidents where the five attributes of an innovation and/or pro-environmental anecdotes were present (Rogers, 2003; Saldaña, 2021). We used code charting and then pattern coding as a second cycle method to categorize codes and assign themes before declaring the phenomenological essence (Moustakkas, 1994; Saldaña, 2021).

Researcher Positionality

The lead author was not part of the original grant team and was brought on later into the project’s cycle to assist the lead evaluator. As a farmer’s daughter, they have experience and knowledge of running an agricultural operation with limited crop experience but little to no formal training or experience in horticulture. This positionality and the timeline of my entrance into the project were made evident early on in the conversation in the hopes the growers might recognize me as a third party attempting to understand their personal experience with the technology and grant implementation. Opening with these statements often served as a point of connection and trust, especially for two of the growers whose businesses were primarily family-owned. For these growers, decisions seemed to be felt more heavily, given the stakes and potential impacts on their livelihood, as compared to the grower whose production was commercialized. As an evaluator, the lead author was conscious of the potential for pro-innovation bias. Even more, as someone whose identity is situated in both academia and production agriculture, the lead author felt especially compelled to ensure the integrity of their experience, including the critical realities, and unintended and undesirable consequences of innovation adoption, which are often neglected in innovation research (Sveiby et al., 2012), were captured and elevated. This was balanced by the lead evaluator, who provided perspective and brought historical knowledge about the grant implementation, and the development and rollout of the advanced growing system.

Limitations

As an evaluation rooted in phenomenology, findings are limited to the three enrolled growers. While insights may transfer to the diffusion of similar systems among similar populations and be of interest to horticultural Extension professionals, inventors, and industry representatives, we express caution in extrapolating findings outside this study’s context. Similarly, as external evaluators, we had limited engagement with the growers. Supplemental data, intentional rapport and trust-building, and insights from the change agent garnered a deeper understanding of the setting and context for adoption. Additionally, discussions with the project lead and previous co-investigators provided additional insights.

Findings

We identified three themes to map the essence of growers’ adoption and confirmation decision process (a) value alignment; (b) reliable hardware; and (c) software integrity. Comprehensively, these factors characterized the essence of the phenomena: Communication and trust: Leverage points in the software/hardware overlap. In this instance, software refers to the human dimensions of adoption, and hardware refers to the lighting control system’s technology and equipment.

Theme 1: Value Alignment

In each of the cases, one primary decision-maker drove the initial decision to adopt and implement the technology bundle in their operations. Growers conveyed how their values, or those demonstrated through their business model, influenced their adoption decisions. We recognized a general inclination toward innovation, which was manifested by investing in on-farm research and development. Wholesale grower 1, employed in-house R&D staff and encouraged an understanding of the latest technologies. This was demonstrated through the statement, “we’ve seen research articles from various universities about how much light you should give for plants in terms of mols per day, so we wanted to see if we can get a little closer to what our crops needed.” They also supported “progress in modernizing growing technologies” through virus testing, breeding, and hybridization as listed on their website. Similarly, grower 3 described seeding and growing hydroponic lettuce to eliminate soil use altogether. And grower 2 emphasized their inclination to innovate saying, “there are hundreds of things that have to be watched or anticipated, and you have to get out ahead of all that.”

Because the project’s original objectives promoted energy conservation, we were particularly interested in how growers’ pro-environmental beliefs or behaviors influenced adoption and confirmation decisions. Pro-environmental behaviors and beliefs were evident during on-farm observation and through analysis of growers’ websites. All three of the growers’ websites demonstrated consensus toward their commitment to sustainability. For example, one site stated, “We’re dedicated to sustainable farming: By adhering to agricultural and food production practices that do not harm the environment, provide fair treatment to workers, and that support and sustain our local communities.” Another growers’ website read, “[The company] prides itself on its sustainability, as well as the work we do to protect water resources, prevent erosion, and build up [of] our soil by planting many beneficial green manure cover crops.” During the on-farm visits, all three growers provided examples of on-farm sustainability behaviors they have adopted to conserve the environment, such as efficient supplemental lighting and automated systems, water use controls, integrated pest management practices, and the use of solar and alternative energy. In these efforts, however—there was often a direct translation to cost savings, or avoided costs, for growers—and added value for marketability. This was especially evident during our on-farm visit with grower 2, who expressed personal conviction toward conservation while recognizing the positive consequences for their business. They stated,

It was important to me, because since I was a kid, I’ve always thought that you don’t waste things. That’s how I was raised. And whether it’s something tangible you can hold your hand or power, you just don’t… Now that we’ve grown, we’re pulling about 100,000 watts to run the farm. That’s our peak load. And that’s how we get billed. There was that incentive too. So, I wanted to be frugal and optimize the load for the power bill.

Grower 1 echoed this value and said, “We’ve got a lot of acreage here underneath lights. And if we can just make sure those pictures are hitting our targets, that could be some huge cost savings for us.” Grower 3 was most candid about their motivations to adopt in this instance saying, “I don’t think the sustainable part had a lot to do with this decision.” At large, it was evident growers saw value in pro-environmental attributes of the advanced growing system, especially when it aligned with the values of their consumer base but were perhaps more motivated by the translation of energy conservation to cost savings. 

Theme 2: Reliable Hardware: Demonstrating Potential for Filling a Niche Industry Need

The second theme centralized around the technology itself and factors that influenced adoption and continued use. Through this theme, growers described their experiences with installing, using, and evaluating the technology bundle. This was presented through two categories: innovation attributes and technical challenges, with subcategories identified for compatibility, complexity, relative advantage, and trialability. Growers expressed how the new system filled a niche need in the industry that provided more precise lighting control for product finishing and quality, and they were generally satisfied with the new technology. Grower 1 said, “We ship a lot of flowers out in March, April, and May, and to finish that product, we need those warm environments with grow lights. As we keep expanding, we need a technology that can help us manage those systems.” This sentiment was reiterated by grower 3, who stated,

Well, the decision to put the lights in was mostly for quality and production in the dark months. We didn’t have enough product at the right times because it was tied up on the table. So one of the things I liked the most is I could go in and [customize the lighting] ….You can actually control it and then have [the product] when you want it.

All three growers described how the systems’ ability to measure and control mols afforded them advantages over previous systems or approaches they had used. For grower 1, the technology advantage came from being able to acquire more precise mol detection from sensors inside the greenhouse. They explained, “I think our outside sensor will pick up on the reflection from the snow, just from being outside. Because when there is really fresh snow, my lights [controlled by the replaced system] would be off, when I think they should be on. With this new system, they were on.” Whereas for grower 2, the benefit was the ability to record and analyze data. They said,

The controller we had was sort of like the next best thing to their control. But it didn’t measure. So, it was alterable and it could be adjusted. So in other words, it measures light, but it doesn’t record light. It measures intensity in watts per square meter. And so I was able to set our existing controller to come on and off at certain thresholds. And that would change as we went into darker periods or came back out. I would adjust it manually, but it was a guess.

For the growers, the ability to both record light levels and automatically set system controls to control use based on their specific crop needs offered added value in a way that was novel but still simple and easy to use. Growers described how, in theory, the system was “just right,” robust enough to have an advantage over other systems, and user-friendly enough to make it attainable for mid-size growers, if they have existing lighting technology or means to expand. “It’s simple, straightforward…. There are systems out there that are high tech, but we don’t really need that,” grower 3 said. Grower 1, a larger grower relative to others in their area, cautioned that “the technology from the light standpoint has to work well with this system. I’m not sure a lot of growers have that kind of lighting technology.” For these growers, even when their existing systems did not completely accommodate the new system, they were able to adapt their current systems with relatively low cost. Growers conceded the added cost of time or resources either to learn, install, or troubleshoot the system was minimal. Grower 2, who had to reinforce their internet access prior to use, mentioned that the installation cost incurred, though more than expected, was offset by the relatively low-risk trialability afforded by the project. This was echoed by grower 3 who said, “with the project benefits, it wasn’t really going to be a big investment. So, we’re like, let’s just give it a shot.”

Growers were able to manage risk even further by trialing the system on just one or two bays of product to compare quality or performance against their other systems. In the event the system did not perform, they could revert to their previous systems. This proved to be necessary at times because, despite its simplicity, the system did experience some technical challenges. Most of these had to do with the reliability of the system turning on and off as intended. They said,

I remember looking up the lights, but they weren’t working. So then I had to disconnect the lights again, and I put a little pilot light up there so that, they could trigger it on and off remotely. And we could see some indicators that it actually would do what we wanted it to, without putting our crop in jeopardy.

For grower 3, technical challenges with the lighting and the initial use of red lights compromised crop quality, causing stunted growth and tip burn. They ultimately found the

the system worked better with some varieties than others.

Theme 3: Software Integrity and the Importance of the Client-Change Agent Interaction

The technical challenges growers faced seemed to be mediated by what we identified as software integrity, or the strength and quality of elements unrelated to the technology or its attributes but integral to the adoption and confirmation decision-making process. Discussions of the client-change agent interaction related mainly to categories that characterized the overall project management and communication, observability, and trust. When managed well, these elements and efforts compensated for technical challenges with the innovation’s hardware. However, when unattended to, the experiences growers described created vulnerabilities and caused a breakdown in the adoption process. Early in the project cycle, during installation and setup, growers routinely communicated with the change agent, who was quick to help them troubleshoot and make necessary adjustments. All three growers were satisfied with the nature and extent of the communication at the beginning of the project. Growers 1 stated,

I talked to [the change agent] quite a bit, just with the issues that we were seeing. [Their team] would email me those monthly reports, I would text or call if I had any issues. He was always very responsive and good at responding within a timely manner, so I appreciated that.

Likewise, grower 2 affirmed the change agent’s willingness to work with them to remedy issues, though these requests were often reactive and grower-led. There did not appear to be structures in place for proactive communication, and at times growers had to be persistent.  

If there was something critical and we wanted to change the system, we just had to call him a couple of times, or make sure they knew that it was important to talk to him, and then they would get right on it.

By the projects’ end, their experiences are best summed by a remark from grower 1, who said, “It did seem like support tapered off at the end.”

I emailed [the change agent] in March or May. I said, ‘Hey, I switched over to our old system. We’re not using your system anymore. That’s when he was like, ‘Oh, well, the company’s not doing so well. I’ll reach out when I know more.” And I haven’t heard anything back yet. It’s probably been one or two months.

When we collected data for this study, all three growers were informed the company was going out of business, and the project was terminating. Growers were confused regarding next steps and if there would be further interactions with the change agent. “Is anyone going to collect this [equipment]? Or do we just dispose of it as we feel fit?” one asked. These statements bled into discussions of how the project was managed, and we recognized how that impacted their experience. Grower 1 discussed experiencing delays in installation that affected their ability to evaluate the system’s performance. Grower 1 said, “Because of the late installation in 2022, we didn’t get it going until end of March or April, and so that was a critical time for us. We missed out on a year of collecting information.” For growers 2 and 3, this was less of an issue, they were recruited much earlier in the calendar year, so even after significant delays, were operational by the following winter. Growers 1 and 2 discussed frustrations with the intended incentive payments, either that they never received it, or that they opted not to because they felt the paperwork was too complicated. “It’s not the end of the world, you know, but it was a little disappointing,” one said.

These examples of miscommunication and disappointment influenced other areas of the client-change agent interaction. As the project ended, the three growers indicated a lack of trust in the change agent and the system’s ability to deliver as intended, specifically as it related to the data they were receiving on energy and cost savings. Because data comparisons were based on projections, rather than past performance, grower 2 was skeptical about the accuracy of the reports and did not feel they painted the whole picture. They said, “It was a bit too nebulous…and I didn’t trust it.” Similarly, grower 1 expressed a desire to validate the data they were receiving. They said,

“We were going to input our stuff from [the other system] into there to see how it compared and they were going to help me with that. But by the time we were ready to take those steps, they’re no longer in business.”

Without being able to validate the information they were receiving, it made it difficult for growers to make objective comparative judgments about the new system, impacting trialability. This uncertainty further confounded the nature of the information-sharing throughout the project and the lack of observability of the innovation. While growers discussed having immediate access to the change agent and their support team early in the project, there did not appear to be a mechanism to consult with other growers in the program. Additionally, it did not appear there was much effort or perceived need on behalf of the growers, to share information or consult with others either during the initial adoption decision-making process or throughout the project. While growers expressed an awareness and use of Extension for other aspects of their business, there was minimal involvement or resource-seeking from their state Extension systems during the project. In one instance, grower 1 was recruited through an Extension affiliate; however, the other two growers found out about the program from a trade publication and reached out directly. In each case, they did not seek out more information either because they believed it to be a low-risk decision or because they trusted that the product would deliver as the change agent had described. Growers 1 said,

No, there was no one else I really talked with. I had mentioned to a few other growers that we were getting involved. And being that we’ve got a lot of acreage of lights here, we felt comfortable just doing a smaller section…and didn’t feel like we needed to consult with anybody.

Grower 3 felt similarly, indicating they had previous experience with a similar system. Their recognition of its benefit motivated them to adopt and enter the trial.   

I did not. I did not because I knew he told me what it could do or what it would do. And then I knew from the [old system], that’s what we wanted. Because we had the [old system], did without, and we really missed it.

Despite these challenges with software integrity, growers conceded that, ultimately, the system demonstrated its potential. However, the most evident barriers to continuance were the limited trialability and observability due to the project’s closure and a lack of support from the change agent. Grower 1 said, “it just seemed like [the system] had a few glitches that never got quite ironed out. But if the glitches had been ironed out, I think it would have been nice.” Despite the lack of continued support, grower 3 was the only one still using the system.

I’m still hooked up….If there’s a problem, I don’t have anybody to fix it, [and] then we’ll have to look elsewhere. There’s a couple of systems, but they are very expensive. So hopefully somebody else comes along with a system like this—this is very inexpensive. We don’t want to get into a lot of software. But hopefully somebody comes up with a system similar to this, if there is an issue. 

Despite their discontinuance, grower 2 expressed a similar desire. They said,

You know, I know this probably did not turn out like they wanted. But I hope the funder continues to invest in things like this so that we can continue improving the technology for growers. Because it is needed if we want to keep moving in the right direction.

Through these sentiments, growers indicated a recognizable need for this technology and demonstrated interest in more opportunities to engage with new products in similar ways.

Conclusions and Recommendations

This research supports growth and innovation in the horticultural industry and can provide valuable insights for inventors, agricultural sales professionals, Extension specialists, and grant managers during the recruitment of growers and diffusion of new technologies in the industry. While the business closure disrupted adoption and hindered diffusion, the technology-filled an operational need, aligned with business values, and was well-received. This underscores the importance of continued research and development of automated lighting systems with enhanced data collection and measurement capacity.

In regard to pro-environmental beliefs, growers took on more of an egoistic rather than an altruistic lens (Stern, 2000). While they affirmed its importance, their pro-environmental beliefs and behaviors seemed to influence adoption and continuance decisions to a lesser extent than cost savings, added value, and marketability to their consumers. This translated to growers’ emphasis on trialability. These findings hold implications for how the benefits of advanced growing systems, practices, and similar technologies are communicated to growers and potential adopters (Rust et al., 2021). In marketing to midsize growers seeking to invest in this type of technology, change agents and Extension professionals should engage with product inventors as opinion leaders in technology diffusion and leverage existing grower relationships. Recruitment should target growers whose consumer base values social responsibility (Jansson & Biel, 2011) and frame benefits around cost savings and economic gain. Ultimately, cost remains a barrier for growers seeking to invest in new on-farm technologies (Fiocco et al., 2023). This further reinforces the need to provide growers with low-cost, low-risk opportunities to test systems through grants, or in partnership with university Extension systems. It also underscores the importance of trialability in diffusion (Rogers, 2003). To avoid diffusion failure in new projects, we recommend conducting pilot research with change agents to assess the innovation’s sustainability, risk, and burden of adoption, should the business fail or grant funding expire (Sherry, 2002).

The essence of the diffusion phenomena, Communication and trust: Leverage points in the software/hardware overlap, demonstrated how these essential factors compromised adoption decisions and led to diffusion breakdown. In our phenomena, these were central to the innovation software or “the information base for the tool” (Rogers, 2003, p. 259). Miscommunication and misunderstandings led to uncertainty and distrust in the change agent and performance data, which made growers skeptical about the reliability and effectiveness of the system. Rogers (2003) suggested that “uncertainty implies a lack of predictability, of structure, of information” (p. 6). While they started the project with confidence in the change agent and the system’s ability to deliver, this breakdown in communication and information caused growers’ trust to wane over time. In our case phenomenon, these vulnerabilities contributed to growers’ decision to discontinue. However, grower 3, who chose to adopt without support after the project’s closure, conveyed the most satisfaction with their experience. This underscored the importance of consistent, effective project management to avoid disproportionate treatment of early adopters. Throughout the project, growers dealt primarily with the change agent, who also invented the product. Therefore, serving multiple roles might also have impeded diffusion.

Our finding aligns with more recent scholarship exploring change-agent role conflict when research, scholarship, and industry collide (Schuijer et al., 2021). Depending on the change agent’s threshold for neutrality and critical feedback, role tension could perpetuate pro-innovation bias and inequitable treatment of adopters. Future research should be conducted to explore role conflict in technology diffusion through Extension systems throughout the adoption process to monitor potential effects. Role conflict is a potential compounding factor evaluators should be aware of when assessing grant or programmatic outcomes. Additionally, like-projects should use a client liaison to improve transparency and accountability in client-change agent interactions. Additionally, lack of observability hindered continuance. Despite the importance of social networks, modeling, and success visibility in diffusion (Rogers, 2003), the three growers made decisions in a vacuum.

We recommend creating a grower support network to encourage open communication, heighten observability, promote shared problem-solving, and strengthen multistate industry relations. There is an immense opportunity to collaborate more productively and diffuse new technology through Extension systems. We recommend capitalizing on growers’ existing relationships with land-grant university Extension systems. In the rollout of these technologies, inventors and project managers could collaborate with state Extension horticultural specialists or local county agents to facilitate on-farm adoption and reinforce their role as opinion leaders in the innovation diffusion process. Future research should evaluate perceived economic barriers to adopting growing systems and identify relationships between their risk tolerance, target markets, and willingness to adopt. Additional research on change-agent role conflict in diffusion is needed to understand responsible innovation in horticulture better (Owen et al., 2012).

Historically, discussion among Extension professionals and change scholars has been limited regarding the integrity of an innovation’s software in diffusion of horticultural technologies. In our case, “software malfunction” or vulnerabilities in communication and trust enhanced growers’ uncertainty and threatened diffusion, even when the hardware was technologically sound. Communication is a key element of diffusion (Rogers, 2003). Theoretically, scholars emphasize communication in adoption but neglect its role at the nexus of where hardware and software meet. We argue breakdowns in the hardware/software overlap, specifically as they relate to communication and trust, can disrupt adoption of new technologies or lead to discontinuance, over time. Future research should continue exploring the role of trust in growers’ perception of advanced lighting technologies and the research team (i.e. scientists, change agents, change agents, industry stakeholders) and how trust might influence their motivation to adopt. Given growers’ skepticism and wavering trust in outcome data being presented, we recommend future projects place an increased focus on effective science communication when sharing results with growers. Extension professionals are uniquely positioned and motivated to translate science to their audiences (O’Brien et al., 2024). Projects targeting growers for adoption could collaborate with Extension professionals or agricultural communicators to present data in more digestible, user-friendly formats and increase growers’ trust in the validity of project outcomes.

Inventors and industry professionals leading change should collaborate with opinion leaders in Extension to proactively reinforce leverage points in the software/hardware overlap of new technologies, as they can have significant, and perhaps underestimated, impacts on perceived attributes of successful innovation diffusion. As scholars, we often publish best-case scenarios and findings from successful adoption. However, given the richness of findings from this evaluation, despite project challenges, we believe continued research that examines diffusion breakdown and discontinuance is important. This vein of scholarship can help us identify nuance and divergent evidence to refine DI (Rogers, 2003) theory application in an Extension context. Finally, we recommend that increased efforts be directed toward enhancing transparency and accountability in the rollout of new, growing technologies, especially in grant-funded trials. Continuation plans and mechanisms for continued technological and financial support should be developed to ensure growers can sustainably manage their new system post-adoption.

References

Annink, A. (2016). Using the research journal during qualitative data collection in a cross-cultural context. Entrepreneurship Research Journal, 7(1), 1–17. https://doi.org/10.1515/erj-2015-0063.

Behroozeh, S., Hayati, D., & Karami, E. (2023). Energy consumption behaviors in greenhouse production systems based on the value-belief-norm theory: The case of Kerman Province. Iranian Agricultural Extension and Education Journal, 18(2), 163–180. https://dorl.net/dor/20.1001.1.20081758.1401.18.2.10.5

Canlas, I. P., & Karpudewan, M. (2023). The continuum of pro-environmental behavior in the context of the value-belief-norm theory of environmentalism: Implications toward sustainable development. International Journal of Sustainable Development, 26(1), 22–50. https://doi.org/10.1504/IJSD.2023.129143

Comito, J., Haub, B. C., & Licht, M. (2018). Rapid needs assessment and response technique. Journal of Extension, 56(2). https://doi.org/10.34068/joe.56.02.08

Fiocco, D., Ganesan, V., de la Serrana Lozano, & Sharifi, H. (2023). Agtech: Breaking down the farmer adoption dilemma. McKinsey & Company. https://www.mckinsey.com/industries/agriculture/our-insights/agtech-breaking-down-the-farmer-adoption-dilemma

Fossey, E., Harvey, C., McDermott, F., & Davidson, L. (2002). Understanding and evaluating qualitative research. Australian & New Zealand Journal of Psychiatry, 36(6), 717–732 https://doi.org/10.1046/j.1440-1614.2002.01100.x

Gikunda, R. M., Lawver, D., & Riziki, J. M. (2022). Culture as a predictor of effective adoption of climate-smart agriculture in Mbeere North, Kenya. Advancements in Agricultural Development, 3(2), 48–61. https://doi.org/10.37433/aad.v3i2.203

Halbleib, M. L., & Dinsdale, B. (2023). Farmer-centered pesticide risk reduction education in Senegal: A novel, participatory approach. Journal of International Agricultural & Extension Education, 30(1), 7–20. https://doi.org/10.4148/2831-5960.1127

Jansson, M., & Biel, A. (2011). Investment institutions’ belief about and attitudes toward socially responsible investment (SRI): A comparison between SRI and non-SRI management. Sustainable Development, 22(1), 33–41. https://doi.org/10.1002/sd.523

McNall, M., & Foster-Fishman, P. G. (2007). Methods of rapid evaluation, assessment, and appraisal. American Journal of Evaluation, 28(2), 151–168. https://doi.org/10.1177/1098214007300895

Merriam, S. B., & Tisdell, E. J. (2016). Qualitative research: A guide to design and Implementation (4th ed.). Josey-Bass.

Moons, I., Pelsmacker, P., Pijnenburg, A., Daems, K., & Van de Velde, L. J. (2022). Growers’ adoption intention of innovations is crucial to establish a sustainable greenhouse horticultural industry: An empirical study in Flanders and the Netherlands. Journal of Cleaner Production, 330(1), 1–16. https://doi.org/10.1016/j.jclepro.2021.129752         

Moustakas, C. (1994). Phenomenological research methods. Sage. https://doi.org/10.4135/9781412995658

Mulvaney, C., & Kelsey, K. D. (2020). A phenomenological inquiry to understand Ugandan farmers’ perceived barriers to fertilizer use. Advancements in Agricultural Development, 1(1), 63–74. https://doi.org/10.374333/aad.v1i1.7

Nemali, K. (2022). History of controlled environment horticulture: Greenhouses. HortScience, 57(2), 239–246. https://doi.org/10.21273/HORTSCI16160-21

O’Brien, K., Baker, C. N., Bush, S. A., Elliot, M., & Wolf, K. J. (2024). Exploring identities of Extension faculty and educators as science communicators. Journal of Applied Communications, 108(1), 1–15. https://doi.org/10.4148/1051-0834.2529

Owen, R. Macnaghten, P., & Stilgoe, J. (2012). Responsible research and innovation: From science in society to science for society, with society. Science and Public Policy, 39, 751–760. https://doi.org/10.1093/scipol/scs093

Paris, B., Vandorou, F., Balafoutis, A. T., Vaiopoulos, K., Kyriakarakos, G., Manolakos, D., & Papadakis, G. (2022). Energy use in greenhouses in the EU: A review recommending energy efficiency measures and renewable energy sources adoption. Applied Sciences, 12(10), 5150. https://doi.org/10.3390/app12105150                       

Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Sage.

Patton, M. Q. (2015). Qualitative research and evaluation methods: Integrating theory and practice (4th ed.). Sage.

Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.

Rust, N. A., Jarvis, R. M., Reed, M. S., & Cooper, J. (2021). Framing of sustainable agricultural practices by the farming press and its effect on adoption. Agriculture and Human Values, 38, 753–765. https://doi.org/10.1007/s10460-020-10186-7

Saad, M. H. M., Hamdan, N. M., & Sarker, M. R. (2021). State of the art of urban smart vertical farming automation system: Advanced topologies, issues, and recommendations. Electronics, 10(12), 1422. https://doi.org/10.3390/electronics10121422

Saldaña, J. (2021). The coding manual for qualitative researchers (4th ed.). Sage.

Schuijer, J. W., Broerse, J., & Kupper, F. (2021). Juggling roles, experiencing dilemmas: The challenges of SSH scholars in public engagement. NanoEthics, 15, 169–189. https://doi.org/10.1007/s11569-021-00394-8

Sherry, L. (2002). Sustainability of innovations. Journal of Interactive Learning Research, 13(3), 211–238. https://www.learntechlib.org/primary/p/15131/   

Stern, P. C. (2000). New environmental theories: Toward a coherent theory of environmentally significant behavior. Journal of Social Issues, 56(3), 407–424. https://doi.org/10.1111/0022-4537.00175.

Stern, P. C., Dietz, T., Abel, T., Guagnano, G. A., & Kalof, L. (1999). A value-belief-norm theory of support for social movements: The case of environmentalism. Research in Human Ecology, 6(2), 81–97. https://www.jstor.org/stable/24707060

Sveiby, K.-E., Gripenberg, P., & Segercrantz, B. (2012). Challenging the innovation paradigm: The Prevailing Pro-Innovation Bias. In P. Gripenberg, K.-E. Sveiby, & B. Segercrantz (Eds.), Challenging the Innovation Paradigm (Routledge studies in technology, work and organizations). Routledge.

Collaboration that Matters: Unpacking 15 Years of Land-Grant University Research to Mitigate a Devastating Pest in the United States

Authors

Damilola Ajayi, University of Florida, d.ajayi@ufl.edu

Kathleen D. Kelsey, University of Florida, kathleen.kelsey@ufl.edu

PDF Available

Abstract

Collaboration among land-grant university faculty, staff, and stakeholders is crucial to addressing complex issues that defy solutions through individual efforts. The need for sustainable management practices that are environmentally friendly to mitigate activities of pests on growers’ farms, as well as enhance agricultural production, in the face of rapidly expanding global population, climate change, and increasing food demand is of utmost importance. Spotted wing drosophila (SWD) emerged in the U.S. as an invasive pest in 2008. It is a daunting pest that destroy berry and cherry crops globally. Marketers have a zero-tolerance policy for SWD in fruit and are declared a total loss at market. Over the past 15 years, a multi-institutional, multi-disciplinary land-grant university team has created and disseminated a variety of mitigation strategies to growers. This study identified factors underpinning the successful outcomes of the collaborative team using single case study design. Eighteen researchers were involved in the project, 12 agreed to participate in the study. Data collected through interviews, participant observations, and documents were inductively and deductively coded to explore the variables responsible for the unusually long-term collaboration. Participants described their experiences as professional, productive, and expertise based. Factors that positively impacted the team’s high production record included their ability to collaborate, the nature of the problem (invasive pest protocols), team expertise, professional relationships, respect for others, openness, effective communication, positive personality, support for one another, division of labor, and choice/flexibility to join various research projects. The use of improved communication tools and data-sharing software were recommended to further improve transparency and productivity.

Introduction

Land-grant university researchers, Extension specialists, and growers have been collaborating to mitigate agricultural and nutritional challenges in the U.S. for over 160 years with great success using the historical research and Extension model that evolved from the Morrill Act of 1862 (Seevers et al., 1997). The need for environmentally sound practices that promote sustainable, efficient, and enhanced agricultural production and nutritional best practices to meet the increasing demands for food and industrial raw materials globally has continued to benefit from this model and is thriving under the leadership of the United States Department of Agriculture (USDA) and funding from the National Institute of Food and Agriculture (NIFA), among other sources.

Researchers, Extension specialists, growers, government, and non-profit organizations collaborate to solve complex agricultural and socio-ecological challenges that defy individual efforts (Bodin, 2017). Active collaboration among diverse teams have been a foundational principle for addressing complex problems such as environmental management (Eaton et al., 2022), growers’ health and safety needs (Reed et al., 2021), energy conservation on farms, crop and animal production, and pest control (Macknick et al., 2022; Worley et al., 2021). The emergency response from land-grant university researchers to the destructive activities of Spotted Wing Drosophila (Drosophila suzukii) (SWD), a devastating invasive pest of berry and cherry crops (Sial et al., 2020), bolstered the need for scientific collaboration across the U.S. and globally. Limited information exists on social factors responsible for long-term scientific collaborations for tackling invasive pests. Therefore, there is a need to explore the factors responsible for sustaining long-term collaborations that hold the potential to mitigate the SWD infestation in the U.S.

Theoretical Framework

Social constructivism defines learning as a deliberate social practice involving the negotiation of shared knowledge among actors, resulting in a shared understanding of reality. (Bruner, 1966; Dolittle & Camp, 1999; Gasper, 1999; Kant et al., 1934). According to Akpan et al. (2020), social constructivism draws on collaboration for effective learning. In this single case study, we applied Gray’s (1989) theory of collaboration to explore the factors responsible for the long-term collaboration between land-grant university researchers and stakeholders in proffering sustainable management practices for SWD in the U.S. Gray explained that collaboration as “a joint decision-making process among key stakeholders of a problem domain about the future of that domain” (1989, p. 227). Ankrah and Omar (2015) and Bekkers and Bodas (2008) expanded this definition to include cooperation, interaction, and relationships between individuals in social settings or organizations that are targeted at enhancing knowledge sharing or information transfer.

Agriculture by nature faces intricate social, environmental, and agronomic challenges. This has prompted Extension programming and agricultural education to develop collaborative strategies focused on identifying specific issues affecting the environment, conveying such information to land-grant researchers, stimulating the formation of interdisciplinary teams of researchers to address them, and organizing educational programs to reach growers through Extension services (Blanco, 2020; Sulandjari et al., 2022; Coutts et al., 2017; Velten et al., 2021).

Collegiality among researchers has also been identified as a critical factor that enhances scientific research collaborations and productivity (Marlows & Nass-Fukai, 2000) via trustworthy connections as individuals are recognized as equals and for their distinctive contribution to the team (Thorgensen & Mars, 2021). Collegiality facilitates learning and professional development among collaborators (Kelly & Cherkowski, 2015; Rensfeldt et al., 2018). Long-term interdisciplinary collaboration among agricultural researchers from various institutions and Extension professionals has been shown to foster the social construction of agricultural knowledge, solve complex problems, and advance research in dynamic environments beyond the reach of individual efforts. Collaboration extends to growers, facilitating necessary changes in agricultural practices (Díaz, 2021; Pham & Tanner, 2015).

Some of the benefits arising from long-term scientific research collaboration include connecting experts across geographically diverse research communities, who bring differing global perspectives to manage complex challenges, provide problem solving skills to growers and advance agricultural practices and development (Arnal, 2018; Sulandjari et al., 2022). Other desirable social benefits are enhanced understanding, co-innovation, co-authorship, interactive learning, public-private partnerships, public diffusion of results, commercialization of research products, and profit maximization. Individual benefits include self -reflection, increased academic funding and publications, research advancement, reduction in orientation barriers among universities, and trust building among collaborators (Arsenyan et al., 2015; Bekkers & Bodas-Freitas, 2008; Bekkers & Bodas-Freitas, 2011; Brown et al. 2021; Cantner et al., 2017; Cronin et al, 2003; Duta & Martinez-Rivera, 2015; Geissdoerfer et al., 2018; Li, 2015; Skelcher et al., 2013; Storksdieck et al., 2016; Tartari et al., 2012; van der Wal et al., 2021; Wuchty et al., 2007).

Despite wide adoption of collaboration and its significance in various fields, challenges to collaboration include power sharing, consensus building, diverse stakeholder needs, higher trade-offs compared to joint gains (Margerum & Robinson, 2016), deep-seated cultural and regional bias and language (Hill et al., 2012; Schubert & Glanzel, 2006), conflicts (Margerum & Robinson, 2016), non-representativeness of stakeholder views (Purdy, 2012), and legal and regulatory policies among collaborating institutions (Jeong et al., 2011). Regardless of barriers, collaboration among individuals, organizations, and institutions continues to rise as the benefits far outweigh the limitations (Abramo et al., 2013). Dossou-Kpanou et al. (2020) and Paphawasit and Wudhikarn (2022) observed that an important factor that enhanced collaboration was formal and informal communication that engenders trust, familiarity, cooperation, and connectedness. It follows that for an innovation to be developed and adopted, there must be effective communication (Foray & Steinmueller, 2003; Rogers, 2003). Agricultural education and Extension play a crucial role in communicating innovations by incorporating research findings into the literature and developing curricula to reach a broad audience (Ikendi et al., 2023).

Purpose

The purpose of the single case study was to explore the factors responsible for building an enduring collaborative team by describing participants’ experiences as members of a long-term scientific collaboration focused on mitigating SWD infestation in the U.S. Specifically, this study sought to answer the following research questions:

  1. What were participants’ roles within the collaborative team?
  2. What factors contributed to building collegiality?
  3. What factors contributed to the long-term sustainability of the team?
  4. What were the benefits of the collaboration over time?
  5. What challenges did the participants face in establishing a resilient team?
  6. How did participants experience communication within the team?

Methods

We employed a single case study design to answer the research purpose. This approach focuses on gaining an in-depth understanding of a phenomenon under real-life contextual conditions using multiple units of analysis (Yin, 2003). This design is suitable for program evaluation and groups within organizations or agencies (Creswell, 2007). The design was best suited for this study because our case represents a unique long-term collaboration among land-grant universities researchers and was bounded by people, place, and time. Eighteen researchers were involved in the collaboration, 12 agreed to participate in the study, ten of which were entomologists and two were economists. Nine identified as male and three as female. Six worked in the Northeast U.S., three worked in the Southwest, two worked in the Southeast and one worked in the Northwest. The average experience of the researchers was 10 years, and they had at least three junior researchers working in their laboratories. Participants were experts in the fields of economics and entomology and represented 10 states with SWD infestation. In presenting the data we used pseudonyms to ensure participant’s confidentiality (Creswell, 2013) (see Table 1).

Validity was enhanced using multiple sources of data, which also served to triangulate findings and provide rich descriptions (Creswell, 2013; Yin, 2003). We collected data by (a) observing the team through monthly meetings over an eight-year period; (b) analyzing documents and research protocols produced; and (c) conducting in-depth interviews with the participants, which lasted between 55 to 75 minutes (McLeod-Morin et al., 2020). The interview data were recorded, transcribed, cleaned, and then sent to the participants for member checking to ensure validity and trustworthiness (Creswell & Creswell, 2018).

After feedback was received from the participants, we used ATLAS.ti 22® software for Windows® to analyze the data within the context of the case (Lamm & Carter, 2019). Data were inductively and deductively coded to identify phrases that were consistently mentioned as emergent themes and in alignment with theory and emerging themes. Interview data were independently coded by investigators and codes were compared to achieve inter-rater reliability and thematic credibility (Saldaña & Omasta, 2020). These were later triangulated with observation and document data (Wright et al., 2021; Yin, 2003). Observation notes and artifacts were used to triangulate interview findings. Data saturation was achieved when there were no new revelations in the data. Credibility was established through multiple data sources (Yin, 2003) including peer debriefing to ensure our conclusions were consistent with participants’ lived experiences (Denzin & Lincoln, 2008; Merriam, 1988).

To minimize biases (Creswell, 2013), reflexivity was achieved by reporting our background as a Ph.D. student and professor in the department of Agricultural Education and Communication. We engaged monthly with the SWD team and acted as participant observers in the capacity of external evaluators. Memos were kept all through the data collection and analysis process for bracketing purposes to ensure internal reliability and highlighting salient themes (Saldaña & Omasta, 2020). Our findings are part of a larger study conducted over eight years. Due to the qualitative nature of this study and the small population involved, findings may not be generalizable beyond this context. Furthermore, the population is limited to interdisciplinary agricultural researchers from land-grant universities in the U.S. We assumed that the participants gave honest answers to the questions and were actively involved in collaborative efforts for approximately 15 years. Abundant evidence confirms these assertations.

Results

Q1. What Were Participants Roles within the Collaborative Team?

We found that the team consisted of researchers with diverse professional backgrounds, experiences, distinct roles, and responsibilities who intentionally contributed their assets and joined forces to achieve optimal outputs nationwide as displayed in Table 1. Seven participants acted in several research capacities within the collaborative team. They played different and sometimes multiple strategic roles within the team. For example, William and Jason helped to secure permits for field releases of a parasitic wasp from governmental agencies for all the collaborators, bred and raised mass beneficial parasitoids, trained laboratory assistants in other states on the rearing procedures, and distributed parasitoids to five collaborators (Caleb, Daniel, Charles, Anthony and Noah) for field release.

James, the leader of the national research team, explained that “the project was organized by objectives, with at least two researchers leading each objective.” He collaborated with Grace and they both “worked directly with berry and cherry grower/influencers to implement what we know to economic aspects, to behavioral and biological control, chemical control and resistance management aspects of this project.” Grace corroborated James’ explanation stating that she “actively built the research and Extension program in N.E., specifically working blackberry and some blueberry growers and also leading objective one, which was coordinating grower engagement throughout the country.”

According to, William his “role on this project was to investigate natural enemies of SWD and then participate and co-lead the foreign exploration for new natural enemies. This lab was primarily responsible for securing the USDA APHIS permit to get this important beneficial insect through the USDA APHIS and North American Plant Organization to get permits to release Ganaspis brasiliensis as planned releases for states as a form of classic bio control.”

There was clear evidence that the research team was composed of diverse professionals with significant expertise. They were very productive in addressing the complicated challenges imposed by SWD. Furthermore, the team allocated sufficient time to individuals to provide updates on their work, discuss the research protocols, share approval permits, and discuss challenges.

Table 1

Demographic Characteristics of the Population

NameGenderSpecializationRegionYears Collaboration
James, PIMaleEntomologySE12
GraceFemaleEntomologySE12
CalebMaleEntomologySW14
EvaFemaleMolecular biologistSW10
JasonMaleEntomologySW10
CharlesMaleEntomologyNE12
DanielMaleEntomologyNE6
EmmanuelLeadEconomicsNE7
NoahMaleEntomologyNE12
AnthonyMaleEntomologyNE10
WilliamMaleEntomology/ BiologistNE6
OliviaFemaleEconomicsNW7

Note. Southeast (SE), Southwest (SW), Northeast (NE), Northwest (NW).

Q2. Were Team Members Collaborative, If So, What Factors Contributed to Building Collegiality?

This dataset resulted in three themes to explain factors underlying collegiality and productivity. There were (a) nature and distribution of the problem; (b) need for expertise; and (c) quest for knowledge.

Theme 1: Nature and Distribution of the Problem

We found that the research team was exceptionally collaborative and relied on each other’s expertise and social networks to build collegiality. When asked about the factors contributing to team building, James stated “We faced a problem that crosses state boundaries… which no one person or one team could address… we needed to engage as many states, co-principal investigators, and laboratories as possible, to investigate multiple aspects of this project and to develop a program that is appropriate, not only for one region but multiple regions because this is an across the board problem for berry and cherry crops and the pest (SWD) needs different strategies specific to each crop and environment.” This corroborates the response given by Anthony, who stated that “due to the distribution of the pest across the U.S., there was need for concerted efforts which facilitated collegiality.”

Theme 2: Need for Expertise

Each collaborator identified various roles to assume within the greater whole to address the grand challenge. For example, Noah identified the need for testing different technologies in different states under different conditions, Jason and William reported that their focus was on gaining access to biological agents from other collaborators in Europe, South Korea, and Southern China as well as obtaining permits from government authorities for parasitoid rearing and distribution to U.S. laboratories, and its eventual release in the field. Emmanuel and Olivia reported that “the need for economic insight on the implementation of the research technologies in the eastern and western U.S. necessitated their contributions to building the collaboration.” This was also supported by James who stated that “Emmanuel and Olivia were leading economic analysis, and everybody is participating with them to evaluate economic aspects of the different IP strategies that we are developing.” From Eva’s perspective, “the need for genomics analysis to identify insecticide resistance in SWD across the nation” facilitated collegiality among members.

Theme 3: Quest for Knowledge

Leveraging fundamental knowledge from the first academic laboratory where the research began upon the detection of the pest in the U.S. and the need to learn more about what’s going on around the country were cited as major reasons for collegiality in the team. According to Caleb, “our lab was the first academic lab to work with SWD, because it was found here in California originally when it was first found in United States in 2008. And so, we worked with that before we even knew what species SWD was and so the initial work was just trying to control it any way [possible].” This statement was reinforced by Charles, who reported that “working with scientists that started the work plus personal interest in knowing current research trends and needs” facilitated collegiality. Further, Daniel explained that the “need to expand the research beyond high to wild blueberry, which is different from other types of berries produced in other states” was a contributory factor to the team’s collegiality.

Q3. What Factors Contributed to the Long-Term Sustainability of the Team?

Six themes emerged to describe factors associated with the sustained relationships of the team

Theme 1: Collaboration with Good People

Anthony, who worked with the team for 10 years, described the team as a “good, collaborative, and productive team. We support each other. It’s a great team of people to work with and that is why I have continued with this team for so many years.” Emmanuel explained that working with the group was “quite worth it and is excellent. I couldn’t work in a nicer group environment; they are they are wonderful. I have learned a lot from them. I wish I could have more contact with all of them.” William also reported that “we have some good people on board, … they have been very effective and efficient.” Similarly, Olivia stated that “the folks on the grant have been really helpful if, for example, Charles has helped me very intensely in seeking growers’ contacts and pest consultants and Caleb has directed me to the right people to start asking questions for pest consultants.”

Theme 2: Professionalism

Professionalism was demonstrated by the team of researchers. Caleb and Grace stated that integrity, good personality, respect for each other, willingness to learn and researcher expertise were instrumental to the success of the team. In Charles words “They are genuinely invested in solving problems, they share, and all that and I think we’re all for the most part, motivated by that.”Other factors identified by William, Daniel, and Eva included pre-existing student-advisor relationships, which evolved into collegial relationships and support as students moved into faculty roles.

Theme 3: Capacity Development and Networking

Career development was an important factor that contributed to the team’s long sustainability Daniel identified “prospects for career development as a researcher and the opportunity to work with good people as factors that have contributed to the team’s sustainability over the years.” Noah also explained that “one thing that the project does is that it helps you to be involved with a big network of researchers…. Charles and Daniel are coming to visit us …, because they are going to get Ganaspis and they are going to stop by on their way, and I am going to meet them…it is like networking for early career.”  Grace stated that the research and professional relationships that existed had “exposed young researchers to multiple and different research teams around the country. And that’s been really beneficial for them as they move on in their careers” Olivia reported that “the bolus of this project is that I was able to connect with different pesticide consultants in the state of Washington and they were able to collect data on what programs or strategies to control for different pests and diseases for blueberries and sweet cherries in the Pacific Northwest including obviously, Spotted Winged Drosophila.

Theme 4: Communication

Frequent communication was found to be a strong factor for the sustained collaboration in this study. All 12 of the participants reported that good communication among team members and well-structured regular meetings were instrumental to the sustained collaboration. From our observations, a monthly general meeting was held to discuss team progress while sub-teams meet independently to advance their research efforts. In addition, participants communicated through email.

Theme 5: Synergy and Cohesion

Emmanuel and Noah stated that he was motivated by the intelligence of team members, commitment to the work, good understanding of research activities, flow and openness of the team to new research ideas, transparent activities, team spirit, less competition, and freedom to select areas of research interests. This was corroborated with our observations as scientists demonstrated good understanding of their roles and asked for clarifications from other researchers working on a specialized aspect of the research. There was unity within the team with few incidences of tension, conflict or strife. We observed that the team was composed of mature minds who were interested in solving problems rather than pursuing individual interests.

Theme 6: Leadership

Eleven participants reported that strong leadership, excellent team coordination, and regularly scheduled meetings were influential factors contributing to long-term sustainability of the team. According to Charles “I think a lot of that comes from the leadership. The leader has been good at getting us on regular meetings to talk about all the pieces of the project. So, I think just his regular organization of those meetings has really helped. We also have sub-objectives, and objective meetings through the year and that’s been good for keeping in contact with people.”

Q4. What Were the Benefits of the Collaboration Over Time?

To explore the benefits of collaboration, participants were asked to describe the outcomes accruable to the collaboration. Advancing their scientific understanding of the biology and ecology of the pest and its mitigation were the primary benefits of collaboration. This was described as gaining a novel understanding of location specific control strategies for SWD, capacity building in leadership, access to statewide datasets, employment and research opportunities, and expansion of the body of literature through multiple research publications.

Specifically, James reported that, “I now know that SWD needs different strategies specific to each crop and region and we have been able to develop reduced risk insecticides with non-target effects as well as insecticides for multiple modes of action.” Charles stated that he “gained significant knowledge from the discoveries made by the team and that has placed him in a better position to act in an Extension capacity.” While Grace explained that the collaboration provided junior researchers platforms to serve in leadership roles within a national research team, Eva stated that the collaboration provided students the research opportunity to build their technical bio-informatics skills and practically develop genomics sequencing libraries.

Furthermore, Daniel reported that the long-term collaboration resulted in multiple joint publications in different research areas and has also given laboratory staff and graduate students opportunities to lead research, gain experience and promote their careers in academia and industry. According to Anthony, the sustainable collaboration “allowed us to complete, finish, and continue some of the work that we started in the last project and hadn’t really completely finished and achieved our objectives.” Emmanuel stated that the collaborative efforts have enabled his graduate students to secure employment opportunities both locally and internationally.

Other attributes highlighted by the participants include increased knowledge through the practical use of a technology, which was presumed to fail, development of non-chemical-based control solutions needed by clients to manage their crop losses, development of interpersonal relationships, access to statewide integrated pest management data, new research collaborations among participants on other projects, identification and hiring of good researchers and technicians into permanent positions in their laboratories, established partnership with agrochemical firms, expansion of social network on a global scale, and attracting funding opportunities from private organizations.

Q5. What Challenges did the Participants Face in Establishing a Resilient Team?

We identified challenges that were linked to institutional and coordination complexities that are typical of diverse and multi-stakeholder collaborations. However, we found that the COVID-19 pandemic was the major constraint that imposed both laboratory and field restrictions on the collaboration as it halted travel, hiring of staff, acquisition of equipment, and other research materials. This was not surprising as the pandemic impacted all sectors globally.

While not a barrier to success, James and Anthony reported that “having big teams across many states, the number of co-PIs, multiple regions, and a number of institutions involved in the collaboration made coordination and management a bit challenging.”According to Grace, the structure of leadership was a challenge as some leaders were more effective than others. “People who naturally work well together, work together. Those who don’t naturally work well together do their own thing and they generate a lot of their data, and they are productive, but they are not productive in a coordinated approach.” Furthermore, a shift in the roles of participants as they relocated due tocareer advancement was also identified as a challenge as it caused a temporary shortage of expertise and quick implementation of collaborative decisions was impeded. Grace also explained that assumption of roles that required special social science expertise by entomologists was “a bit out of the wheelhouse” for some of the participants which increased their responsibilities.

While Jason and Daniel reported that the bureaucracy involved in securing approvals from regulatory agencies as impediments to the collaboration processes, Caleb and Emmanuel explained that due to the complicated nature of the research, available space for field work, environmental conditions, different types of crops and their production systems, some participants adapted different treatments, which limited standardization of result and availability of economic data across states.

Q6. How Did Participants Experience Communication Within the Team?

All 12 participants described the communication patterns existing among the collaborative team as “good” and “effective” by adopting different communication channels including monthly virtual meetings over Zoom®, emails, phone calls, as well as in-person visits to disseminate information and coordinate activities.

Specifically, Olivia stated that frequent communication regarding research updates reinforced the team’s ability to work closely together. This perspective was corroborated by 11 participants who stated that the regular monthly meetings structured by the team leadership to talk about all the pieces of the project contributed to the effectiveness of communications among members. While Eva explained that, “though the team is spread across the U.S., I don’t think there are necessarily any barriers or problems in terms of communication.” Jason reported that, “unlike other past research collaborations where I was a member, which felt almost secretive, and not knowing what other researchers in the team were doing, the communication here is fantastic, well-coordinated, very open and it feels nice to be a team member.” This view was supported by Caleb who stated, “the communication in this project has been really good, and it is not always like that with a lot of other projects. I am not afraid of saying what I am doing, what I am finding, and I never got the impression that someone is going to take my idea and run with it.”

Although Emmanuel explained that due to the difference in team members’ professional background, “it was initially challenging for me to communicate what my profession could bring as an economist to the project as most of the researchers thought that economists were accountants.” Nevertheless, his communication with the team members improved when they became more receptive to the analytical tools he developed to provide more economic information about their entomology work. In contrast, Grace described the communication as “kind of fragmented as some folks really pay close attention, communicate, and have a pretty strong grasp of everything that’s being done, and then there are some team members again, who are focused on their specific area and may not be super engaged with others.”

Conclusions, Discussion, and Recommendation

In conclusion, participants reported a high degree of esprit décor and low competition that resulted in a sustained long-term successful and highly productive collaboration over 15 years. Our findings have elucidated several key factors that enhanced the long-term collaboration and can be applied to other teams seeking to extend partnerships for enhanced problem solving and productivity. Our participants engaged in (a) leveraging fundamental knowledge (of SWD) from founding researchers to junior faculty, thereby expanding social capital to create a demand for professional expertise within the group; (b) sharing personal interest in knowing current research needs and trends; (c) and extending research findings across crops and regions.

The team created an atmosphere of support for each other including career development and networking for junior researchers. Members were open to sharing research ideas without fear of intellectual theft and were transparent with research activities. Other factors that contributed to success included good communication among members, integrity, collegial personalities, willingness to learn, high intelligence, commitment to hard work, and good leadership. Our findings demonstrate that successful teams are productive, and this group has successfully mitigated the destructive activities of SWD in the U.S. Consistent with the literature, we found similar benefits of collaboration including (a) creating new location and crop specific control strategies for SWD; (b) development of new non-target chemical control technology; (c) leadership capacity building and professional development for students and junior researchers; (d) sharing of information on research and Extension positions; (e) access to statewide datasets; (f) knowledge sharing, and (g) expansion of the body of literature through multiple research publications (Abramo et al., 2013; Baker et al., 2020; Gladman, 2015; Koskenranta et al., 2020; Paphawasit & Wudhikarn, 2022 ).

Nevertheless, a few challenges constrained realizing the full potential of the team including the COVID-19 pandemic, limited funding, bureaucracy in securing governmental approvals and certifications for the parasitoid project, complexity of member coordination, and relocation of members over the life of the project.

This study provides empirical evidence that interdisciplinary and multi-institutional teams serve as a vehicle for research advancement in the agricultural sector. The team used a variety of approaches to create solutions to address a complex agricultural problem that could not have been solved in isolation. Aligning with Bryson and Crosby (2015), Felin and Zenger (2014), Fernandes and O’Sullivan (2021), and Garcia et al. (2020), multi-stakeholder collaborations are often stimulated by a common problem and the decision to collaborate is influenced by competitive relevance, characterized by a diversity of knowledge among team members.

The findings from this study are relevant to principles of agricultural education, communication, and leadership in several meaningful ways. The practice of leveraging fundamental knowledge from founding researchers to junior members exemplifies effective knowledge transfer, a core principle in agricultural education (Roberts et al., 2023; Wright et.al, 2021). Agricultural education and Extension programs can incorporate these practices to foster a supportive learning environment, where emerging professionals are encouraged to develop their careers through mentorship and networking opportunities (Hur et al., 2023). The team’s approach to sharing personal interests in current research needs and trends, as well as extending research findings across crops and regions, highlights the importance of collaborative learning, which is critical for agricultural Extension (Croom et al., 2022; Franz et al., 2010, Narine et al., 2019). The team’s commitment to open communication and transparency in research activities is a cornerstone of effective agricultural communication. By fostering an environment where ideas are freely shared without fear of intellectual theft, agricultural educators can encourage a culture of trust and innovation among students and researchers (Ashfield et al., 2020).

It is recommended that agricultural professionals engage in collaborative research to showcase their expertise, attract visibility to their research, build their social capital and contribute significantly to the body of literature while solving complex problems. With the increasing call for collaboration from funding agencies, practitioners should focus on the use of improved communication tools and data-sharing software such as MS Teams, Slack, or Share point for collaboration purposes. Giving members the liberty to choose from research components of interest, prioritizing integrity and transparency regarding research activities, and demonstration of support for one another are critical factors for successful, productive, and sustainable long-term collaborative teams. Future research could explore how growers’ knowledge and experience of SWD have changed over time and the effect of these innovations on SWD on their farms. The study was limited by the scope, participant non-respondents, and the small sample size, which may impede transferability of the findings to other cases.

Acknowledgements

This project was funded by the United States Department of Agriculture, National Institute of Food and Agriculture (project number 2020-51181-32140), and facilitated by the University of Georgia, the University of Florida, and 12 other universities. Ajayi, D. and Kelsey, K. co-conceptualized the study, co-developed the methodology, co- collected, and analyzed the data, and co-wrote the manuscript.

References

Abramo, G., D’Angelo, C. A., & Murgia, G. (2013). The collaboration behaviors of scientists in Italy: A field level analysis. Journal of Informetrics, 7(2), 442-454. https://doi.org/10.1016/j.joi.2013.01.009

Akpan, V. I., Igwe, U. A., Mpamah, I. B. I., & Okoro, C. O. (2020). Social constructivism: Implications on teaching and learning. British Journal of Education, 8(8), 49-56. https://www.eajournals.org/wp-content/uploads/Social-Constructivism.pdf

Ankrah, S., & Omar, A. T. (2015). Universities–industry collaboration: A systematic review. Scandinavian Journal of Management, 31(3), 387-408. http://dx.doi.org/10.1016/j.scaman.2015.02.003

Arnal, Á. J. (2018) Implementation of PEF treatment at real-scale tomatoes processing considering LCA methodology as an innovation strategy in the agri-food sector. Sustainability,10(4),1-16. https://doi.org/10.3390/su10040979.

Arsenyan, J., Büyüközkan, G., & Feyzioğlu, O. (2015). Modeling collaboration formation with a game theory approach. Expert Systems with Applications, 42(4), 2073-2085. https://doi.org/10.1016/j.eswa.2014.10.010

Ashfield, A., Mullan, C., & Jack, C. (2020). Encouraging farmer participation in agricultural education and training: A Northern Ireland perspective. International Journal of Agricultural Management, 9, 96-106. https://doi.org/10.5836/ijam/2020-09-96

Baker, B. P., Green, T. A., & Loker, A. J. (2020). Biological control and integrated pest management in organic and conventional systems. Biological Control, 140, 1-19. https://doi.org/10.1016/j.biocontrol.2019.104095

Bekkers, R., & Bodas Freitas, I. M. (2008). Analyzing knowledge transfer channels between universities and industry: To what degree do sectors also matter? Research Policy, 37(10), 1837-1853. https://doi.org/10.1016/j.respol.2008.07.007

Bekkers, R. N. A., & Bodas Freitas, I. M. (2011). The performance of university-industry collaborations: empirical evidence from the Netherlands. A paper presented at the DRUID 2011 on Innovation, Strategy, and Structure, Organizations, Institutions, Systems and Regions. 1-36. https://pure.tue.nl/ws/portalfiles/portal/57881156/448150161855381.pdf

Blanco, C. D. P. (2020) Water availability risk in agriculture: An application to guadalquivir and segura river basins. Estudios de Economia Aplicada, 29(1), 333-357. https://doi.org/10.25115/EEA.V29I1.3942.

Bodin, O. (2017). Collaborative environmental governance: Achieving collective action in social-ecological systems. Science, 357(6352).1-8. https://doi.org/10.1126/science.aan1114

Brown, P., Von Daniels, C., Bocken, N. M. P., & Balkenende, A. R. (2021). A process model for collaboration in circular oriented innovation. Journal of Cleaner Production, 286, 1-18. https://doi.org/10.1016/j.jclepro.2020.125499

Bruner, J. S. (1966). Toward a theory of instruction. Harvard University Press.

Bryson, J. M., Crosby, B. C., & Stone, M. M. (2015). Designing and implementing cross sector collaborations: Needed and challenging. Public Administration Review. 75(5), 647-663. https://doi.org/10.1111/puar.12432.

Cantner, U., Hinzmann, S., & Wolf, T. (2017). The coevolution of innovative ties, proximity, and competencies: Toward a dynamic approach to innovation cooperation. Knowledge and Networks, 11, 337–372. https://doi.org/10.1007/978-3-319-45023-0_16

Coutts, J., Long, P., & Murray-Prior, R. (2017, June 19). Strengthening practice change, education and Extension in reef catchments, Extension approaches and methods. COUTTS J & R. https://reefextension.couttsjr.com.au/

Creswell, J. W. (2007). Qualitative inquiry and research design (2nd ed.). Sage.

Creswell J. W. (2013). Research design. Qualitative, quantitative and mixed method approaches. (4th ed.). Sage.

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approach. (5th ed.). Sage.

Cronin, B., Shaw, D., & La Barre, K. (2003) A cast of thousands: Co-authorship and subauthorship collaboration in the twentieth century as manifested in the scholarly literature of psychology and philosophy. Journal of American Sociology Information Science and Technology, 54(9), 855-871. https://doi.org/10.1002/asi.10278

Croom, D. B., Yopp, A. M., Edgar, D., Roberts, R., Jagger, C., Clemons, C., & Wagner, J. (2022). Technical professional development needs of Agricultural Education teachers in the southeastern United States by career pathway. Journal of Southern Agricultural Education Research, 73(73),132. https://jsaer.org/page/2/?cat=-1

Denzin, N. K., & Lincoln, Y. S. (2008). Strategies of qualitative inquiry. Sage.

Díaz, M. (2021). Environmental objectives of Spanish agriculture: Scientific guidelines for their effective implementation under the common agricultural policy 2023-2030. Ardeola,68(2), 445-460. https://doi.org/10.13157/arla.68.2.2021.fo1.

Doolittle, P. E. & Camp, W. G. (1999). Constructivism: The career and technical education perspective. Journal of Vocational and Technical Education, 16(1), 23-46. https://doi.org/10.21061/jcte.v16i1.706

Doussou-Kpanou, B. D., Kelsey, K., & Bower, K. (2020). An evaluation of social networks within federally funded research projects. Advancements in Agricultural Development, 1(3), 42-54. https://doi.org/10.37433/aad.v1i3.65

Duţă, N., & Martínez-Rivera, O. (2015). Between theory and practice: the importance of ICT in higher education as a tool for collaborative learning. Procedia-Social and Behavioral Sciences, 180, 1466-1473. https://doi.org/10.1016/j.sbspro.2015.02.294

Eaton, W. M., Brasier, K. J., Whitley, H., Bausch, J. C., Hinrichs, C. C., Quimby, B., Burbach, M.E., Wutich, A., Delozier, J., Whitmer, W., Kennedy, S., Weigle, J., & Williams, C. (2022). Farmer perspectives on collaboration: Evidence from agricultural landscapes in Arizona, Nebraska, and Pennsylvania. Journal of Rural Studies, 94, 1-12. https://doi.org/10.1016/j.jrurstud.2022.05.008

Felin, T., & Zenger, T. R. (2014).Closed or open innovation? Problem solving and the governance choice. Research Policy, 4(5), 914-925. https://doi.org/10.1016/j.respol.2013.09.006

Fernandes, G. & O’Sullivan, D. (2021). Benefits management in university-industry collaboration programs. International Journal of Project Management, 39(1), 71-84. https://doi.org/10.1016/j.ijproman.2020.10.002

Foray, D., & Steinmueller, E. (2003). On the economics of R&D and technological collaborations: Insights and results from the project Colline. Economics of Innovation and New Technology, 12(1), 77-91. https://doi.org/10.1080/10438590303118

Franz, N., Piercy, F., Donaldson, J., Richard, R., & Westbrook, J. (2010). How farmers learn: Implications for agricultural educators. Journal of Rural Social Sciences,25(1),37-59. https://egrove.olemiss.edu/jrss/vol25/iss1/

Garcia, R., Araújo, V., Mascarini, S., Santos, E. G., & Costa, A. R. (2020). How long-term university-industry collaboration shapes the academic productivity of research teams. Innovation, 22(1), 56-70. https://doi.org/10.1080/14479338.2019.1632711

Gasper, P. (1999). Social constructivism. In R. Audi (Ed.), The Cambridge dictionary of philosophy (2nd ed.). Cambridge University Press.

Geissdoerfer, M., Vladimirova, D., & Evans, S. (2018). Sustainable business model innovation: A review. Journal of Cleaner Production. 198, 401-416. https://doi.org/10.1016/j.jclepro.2018.06.240

Gladman, A. (2015). Team teaching is not just for teachers! Student perspectives on the collaborative classroom. TESOL Journal, 6(1), 130–148. https://doi.org/10.1002/tesj.144

Gray, B. (1989). Collaborating: Finding common ground for multiparty problems.Jossey-Bass.

Hill, R., Grant, C., George, M., Robinson, C. J., Jackson, S., & Abel, N. (2012). A typology of indigenous engagement in Australian environmental management: implications for knowledge integration and social-ecological system sustainability. Ecology and Society, 17(1), 23-40. http://www.jstor.org/stable/26269005

Hur, G., Roberts, T. G., Diaz, J., Diehl, D., & Bunch, J. C. (2023). Exploring teaching-focused personal networks of agriculture university faculty members: A mixed-methods egocentric network approach. Journal of Agricultural Education,64(1), 28-45. https://doi.org/10.5032/jae.v64i1.28

Ikendi, S., Retallick, M. S., Nonnecke, G. R., & Kugonza, D. R. (2023). Influence of school garden learning approach on academic development of global service-learners. Journal of Agricultural Education, 64(4), 159–179. https://doi.org/10.5032/jae.v64i4.167

Jeong, S., Choi, J. Y., & Kim, J. (2011). The determinants of research collaboration modes: Exploring the effects of research and researcher characteristics on co-authorship. Scientometrics, 89(3), 967-983. https://doi.org/10.1007/s11192-011-0474-y

Kant, I., Meiklejohn, J. M. D., Abbott, T. K., & Meredith, J. C. (1934). Critique of pure reason. JM Dent.

Kelly, J., & Cherkowski, S. (2015). Collaboration, collegiality, and collective reflection: A case study of professional development for teachers. Canadian Journal of Educational Administration and Policy, 169, 1-27. https://cdm.ucalgary.ca/index.php/cjeap/article/view/42876

Koskenranta, M., Kuivila, H., Männistö, M., Kääriäinen, M., & Mikkonen, K. (2022). Collegiality among social-and health care educators in higher education or vocational institutions: A mixed-method systematic review. Nurse Education Today, 114,1-13. https://doi.org/10.1016/j.nedt.2022.105389

Lamm, K. W., & Carter, H. S. (2019). Leadership development program evaluation: A social network analysis approach. Journal of Southern Agricultural Education Research, 69(1), 4-19. https://jsaer.org/wp-content/uploads/2020/06/2019_004-final-print.pdf

Li, K. M. (2015). Learning styles and perceptions of student teachers of computer-supported collaborative learning strategy using wikis. Australasian Journal of Educational Technology, 31(1), 32-50. https://doi.org/10.14742/ajet.521

Macknick, J., Hartmann, H., Barron-Gafford, G., Beatty, B., Burton, R., Seok-Choi, C., Davis, M., Davis, R., Figueroa, J., Garrett, A., Hain, L., Herbert, S., Janski, J., Kinzer, A., Knapp, A., Lehan, M., Losey, J., Marley, J., MacDonald, J., & Walston, L. (2022). The 5 Cs of Agrivoltaic success factors in the United States: Lessons from the InSPIRE research study, United States. A technical report, 1-80. https://doi.org/10.2172/1882930

Margerum, R. D., & Robinson, C. J. (Eds.). (2016). The challenges of collaboration in environmental governance: barriers and responses. Edward Elgar Publishing.

Marlows, M. P., & Nass-Fukai, J. (2000). Collegiality, collaboration, and kuleana: Three crucial components for sustaining effective school-university partnerships. Education, 121(1), 188-194. https://link.gale.com/apps/doc/A66960822/AONE?u=tall22798&sid=googleScholar&xid=f666f6f2

Mcleod-Morin, A., Rumble, J. N., & Telg, R. W. (2021). Challenges and motivations of science communication: An administrative perspective at land-grant universities. Journal of Applied Communications, 105(3), 1-18. https://doi.org/10.4148/1051-0834.2387

McLeod-Morin, A., Telg, R., & Rumble, J. (2020). Describing interdisciplinary agricultural research center directors’ perceptions of science communication through goals and beliefs. Journal of Applied Communications, 104(1),1-18. https://doi.org/10.4148/1051-0834.2300

Merriam, S. (1988). Case study research in education: A qualitative approach. Jossey-Bass.

Mishra, D., & Mishra, A. (2009). Effective communication, collaboration, and coordination in extreme programming: Human‐centric perspective in a small organization. Human Factors and Ergonomics in Manufacturing and Service Industries, 19(5), 438-456. https://doi.org/10.1002/hfm.20164

Narine, L. K., Harder, A., & Zelaya, P. (2019). A qualitative analysis of the challenges and threats facing Cooperative Extension at the county level. Journal of Southern Agricultural Education Research, 69(1), 20-32. http://www.jsaer.org/pdf/Vol69/2019_008%20final%20print.pdf

Paphawasit, B., & Wudhikarn, R. (2022). Investigating patterns of research collaboration and citations in science and technology: A case of Chiang Mai University. Administrative Sciences, 12(2), 71. https://doi.org/10.3390/admsci12020071

Pham, H. T., & Tanner, K. (2015). Collaboration between academics and library staff: A structurationist perspective. Australian Academic & Research Libraries, 46(1), 2-18. https://doi.org/10.1080/00048623.2014.989661

Purdy, J. M. (2012). A framework for assessing power in collaborative governance processes. Public Administration Review, 72(3), 409–417. https://doi.org/10.1111/j.1540-6210.2011.02525.x

Reed, D. B., McCallum, D., & Claunch, D. T. (2021). Changing health practices through research to practice collaboration: The farm dinner theater experience. Health Promotion Practice, 22(1), 122-130. https://doi.org/10.1177/1524839921996298

Rensfeldt, A. B., Hillman, T., & Selwyn, N. (2018). Teacher’s ‘liking’ their work? Exploring the realities of teacher Facebook teams. British Educational Research Journal, 44(2), 230-250. https://doi.org/10.1002/berj.3325

Roberts, T. G., Cardey, S., & den Brock, P. (2023). Developing a framework for using local knowledge systems to enhance capacity building in agricultural development. Advancements in Agricultural Development,4(2), 1-19. https://doi.org/10.37433/aad.v4i2.305

Rogers, E. M. (2003). Diffusion of innovations. (5th ed.). Simon & Schuster, Inc.

Saldaña, J., & Omasta, M. (2020). Qualitative research: Analyzing life (2nd ed.). Sage.

Seevers, B., Graham, D., Gamon, J., & Conklin, N. (1997). Education through Cooperative Extension. Delmar Publishers.

Sial, A., Burrack, H., Loeb, G., Isaacs, R., Walton, V., Zalom, F., Daane, K. Chiu, J., Rodriguez-Saona, C., Beers, E., Northfield, T., Fanning, P., Hoelmer, K., Wang, X., Hoheisel, G., Gallardo, K., Gomez, M., & Kelsey.K. (2020). Moving from crisis response to long-term integrated management of SWD: A keystone pest of fruit crops in the United States. Proposal submitted to USDA-NIFA for funding. https://portal.nifa.usda.gov/web/crisprojectpages/1023475-moving-from-crisis-response-to-long-term-integrated-management-of-swd-a-keystone-pest-of-fruit-crops-in-the-united-states.html

Schubert, A., & Glanzel, W. (2006). Cross-national preferences in co-authorship, references and citations. Scientometrics, 69(2), 409–428. https://doi.org/10.1007/s11192-006-0160-7

Skelcher, C., Sullivan, H., & Jeffares, S. (2013). Hybrid governance in European cities. Palgrave Macmillan.

Storksdieck, M., Shirk, J. L., Cappadonna, J. L., Domroese, M., Göbel, C., Haklay, M., Miller-Rushing, A.J., Roetman,P., Sbrocchi, C., & Vohland, K. (2016). Associations for citizen science: regional knowledge, global collaboration. Citizen Science: Theory and Practice, 1(2), 1-10. http://dx.doi.org/10.5334/cstp.55

Sulandjari, K., Putra, A., Sulaminingsih, S., Adi, C. P., Yusroni, N., & Andiyan, A. (2022). Agricultural extension in the context of the Covid-19 pandemic: Issues and challenges in the field. Caspian Journal of Environmental Sciences, 20(1), 137-143.https://doi.org/10.22124/cjes.2022.5402

Tartari, V., & Breschi, S. (2012). Set them free: Scientists’ evaluations of the benefits and costs of university-industry research collaboration. Industrial and Corporate Change, 21(5), 1117–1147. https://doi.org/10.1093/icc/dts004

Thorgersen, K. A., & Mars, A. (2021). A pandemic as the mother of invention? Collegial online collaboration to cope with the COVID-19 pandemic. Music Education Research, 23(2), 225-240. https://doi.org/10.1080/14613808.2021.1906216

van der Wal, J. E. M., Thorogood, R., & Horrocks, N. P. C. (2021). Collaboration enhances career progression in academic science, especially for female researchers. Proceedings Royal Society, 288, 1-10. https://doi.org/10.1098/rspb.2021.0219

Velten, S., Jager, N.W. & Newig, J. (2021) Success of collaboration for sustainable agriculture: A case study meta-analysis. Environment, Development and Sustainability,23, 14619–14641. https://doi.org/10.1007/s10668-021-01261-y

Ward, C., Holmes, G., & Stringer, L. (2018). Perceived barriers to and drivers of community participation in protected‐area governance. Conservation Biology, 32(2), 437-446. https://doi.org/10.1111/cobi.13000

Worley, B., Fuhrman,N., & Peake, J. (2021).A quantitative approach to identifying turfgrass key players. Advancements in Agricultural Development, 2(1), 83-95. https://doi.org/10.37433/aad.v2i1.85

Wright, K. M., Rolling Meadows, I. L., Hauser, A., & Maxwell, L. D. (2021). Designing a technique for program expansion of secondary agricultural education. Journal of Southern Agricultural Education Research, 71(1), 43-60. https://jsaer.org/wp-content/uploads/2021/04/71-Wright-Vincent-Hauser-Maxwell.pdf

Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1049. https://doi.org/ 10.1126/science.1136099

Yin, R.K. (2003). Case study Research: Design and Methods (3rd ed.). Sage.

Effectiveness of Online Program Engagement for 4-H Members during the Covid-19 Pandemic

Lauren B. Hood, Clemson University, eburdin@clemson.edu

Christopher J. Eck, Oklahoma State University, Chris.eck@okstate.edu

K. Dale Layfield, Clemson University, dlayfie@clemson.edu

Joseph L. Donaldson, North Carolina State University, Joseph_donaldson@ncsu.edu

PDF Available

Abstract

Since 1902, 4-H Youth Development programs have been implemented by Cooperative Extension Agents or Educators for teaching, influencing, and leading youth to new life skills that can shape and influence their futures through hands-on learning methods. Fast forward to 2020 when 4-H programs shifted to virtual methods during the COVID-19 pandemic. The purpose of this study and the overarching research question was to identify the perceptions of participants and their parent/guardian related to the virtual 4-H programming opportunities available to youth in South Carolina during the COVID-19 pandemic. This qualitative inquiry was undergirded by the need for achievement theory. Focus group interviews of South Carolina 4-H participants revealed two overarching themes, including communication (before and during COVID-19) and impacts on involvement and retention. Overall, the majority of families interviewed for this study were pleased with their 4-H agent and volunteer’s impact and levels of communication during and post-COVID-19. State 4-H leaders are not only recommended, but highly encouraged, to establish best practices for virtual 4-H programming.

Introduction

Cooperative Extension Services across the United States serve their respective states by offering unbiased, research-based education to audiences young and old (Monks et al., 2017). Cooperative Extension serves as the essential connection between the land-grant university and the public, requiring extension professionals to localize programs and adapt to the needs of their constituents (Cooper & Graham, 2001). “In the last decade, Cooperative Extension has rapidly diversified its portfolio in many ways to respond to the needs of people in our rapidly changing society, including adapting to online learning environments and ‘the cloud’” (Gould et al., 2014, para. 7). One of the most important needs to date was navigating through the COVID-19 pandemic.

Before COVID-19-related closures, 4-H groups and clubs were led by volunteers or 4-H professionals and met in various locations, at varying times to engage, study and practice, or for fellowship and celebration (Burnett et al., 2000). With the COVID-19 pandemic shut down of schools, educators and parents were not prepared to quickly provide hands-on learning activities to complete at home (Loose & Ryan, 2020). Cooperative Extension services nationwide quickly and efficiently created virtual solutions and alternatives to offset the lack of in-person programming (Arnold & Rennekamp, 2020). Cooperative Extension has been challenged to deliver relevant programs with measurable end-results to its audiences (Gould et al., 2014), but how can this be accomplished during a pandemic?  The pandemic created unique challenges and obstacles for all 4-H professionals and volunteers. These dedicated adults were required to be intrinsically and extrinsically motivated (Calvert & Fabregas Janeiro, 2020) to overcome said challenges and obstacles. Grégoire (2004) noted dedicated 4-H professionals and volunteers can quickly adjust to changing needs. These quick-thinking professionals and volunteers were put to the test during the pandemic. Non-parental adults, or adults who serve in volunteer leader capacities described by McNeill (2010), helped provide 4-H programming opportunities to youth via virtual platforms and take-home kits once local Extension offices closed due to the pandemic.

These programming opportunities were meant to aid at-home learning with hands-on activities that, in most cases, were aligned with school standards and to promote positive youth development (PYD); Extension professionals had to learn how to integrate new technologies (e.g., “Zoom”) to engage their stakeholders and provide purposeful educational opportunities (Eck et al., 2022). COVID-19 impacted PYD, including trauma, isolation, the loss of relationships, daily routines, and social outlets to name a few (Arnold & Rennekamp, 2020). With the knowledge of these impacts, Extension professionals strived to remain “consistent with [the] mission of positive youth development, [as] the 4-H program is uniquely positioned to address and mitigate COVID-19 impacts on youths by focusing on building youth assets and providing supportive contexts” (Arnold & Rennekamp, 2020, para. 10). 

It has been recommended that additional research is essential “to gather feedback from parents and members on their perceptions of their own states’ programming efforts during the COVID-19 pandemic” (Hood, 2021, p. 15). Therefore, this study aimed to uncover the perceptions of those participating, specifically, 4-H youth and parents/guardians, in virtual 4-H programming opportunities in South Carolina during the COVID-19 pandemic. This study also yields recommended best practices for future virtual programming. In Gordon and Curlee’s (2011) book, The Virtual Project Management Office: Best Practices, Proven Methods, the authors state, “all organizations must have processes and procedures based on best practices to enhance their chances of success” (p. 109). Several of the best practices recommended revolve around communication with and without Internet access.

Theoretical/Conceptual Framework

McClelland’s (1987) need for achievement theory undergirded this study. This theory of motivation (McClelland, 1987) is associated with learning concepts, where needs are learned through coping environments (Pardee, 1990). The theory outlines three motivating factors; the need for achievement, the need for affiliation, and the need for power (Gill et al., 2010). The need for achievement is associated with personality characteristics such as strong goal setting, taking calculated risks, appreciating feedback, and preferring to work alone (McClelland, 1987). On the other hand, the need for affiliation corresponds with someone who wants to be part of the larger group, is often considered a follower, prefers collaboration, and avoids risk (McClelland, 1987). Finally, someone who likes to win, wants to control situations, enjoys competition, and thrives on recognition aligns with the need for power (McClelland, 1987). These motivating factors associated with McClelland’s (1987) work stem from the theory of needs established by Maslow in the 1940s.

According to McClelland (1987), the three motivating factors exist inherently regardless of gender, age, or culture, but the dominating factor is often one’s life experiences. The need for achievement theory has been implemented in 4-H studies addressing the participation and retention of members (Baney & Jones, 2013; Gill et al., 2010). Based on previous use of the theory, it aligns with this study to explore 4-H member participation and engagement during the COVID-19 pandemic. 

Purpose

This study explored if virtual programming during the COVID-19 pandemic provided vital engagement opportunities for 4-H youth. Realizing that Extension professionals received just-in-time training to learn new technologies to overcome communication challenges (Eck et al., 2022), their efforts to provide those engagement opportunities for 4-H members were investigated.

Methods

This exploratory qualitative research study (Price, et. al, 2018) implemented a case study design using focus groups to further evaluate the impact of the COVID-19 pandemic on 4-H youth in South Carolina. This qualitative inquiry was developed based on previous survey research recommending a deeper dive into the perceptions of 4-H youth and families during the COVID-19 pandemic (Hood, 2021). Therefore, the research team constructed a flexible qualitative interview protocol, consisting of a series of seven overarching questions and talking points to discuss with participants to provide deep, rich information related to participant perceptions of the virtual 4-H programing in South Carolina. Focus groups were held during July 2021 online via Zoom.

The interview protocol was evaluated for face and content validity (Salkind, 2012) by three faculty members in agricultural and extension education across two universities who have all completed coursework and previous research in qualitative inquiry. An email invitation was sent to families of youth who participated in virtual 4-H programming during the COVID-19 pandemic in South Carolina and provided a follow-up email address. The sampling frame consisted of 1,669 individuals (adults and youth). Four families, which included four adults and seven children, (n = 11) across South Carolina responded to the invitation and were willing to participate in a Zoom focus group interview. These four families represented three of the four regions in South Carolina and had youth enrolled across the three 4-H age brackets (i.e., Cloverbud, Junior, and Senior). Zoom was used to conduct the focus groups, while also allowing for the interviews to be recorded and interview transcriptions to be developed through the platform. Each family was provided a family number to allow proper tracking and triangulation across sources, while also providing anonymity.

After the focus group interviews, the lead researcher reviewed the interview transcripts against the audio/video recording to verify accuracy. The research team then analyzed the data using the constant comparative method (Glasser & Strauss, 1967). The research team used the video recording of each focus group, interview transcripts, and interviewer notes to allow codes, themes, and categories to emerge describing the family’s reality (Creswell & Poth, 2018; Glesne, 2016). In addition to multiple descriptions of data, the research team corroborated to develop the emerging themes, following the recommendations of Creswell and Poth (2018) to improve the accuracy of data analysis through coding checks, establishing reliability of the coding process. Specifically, the constant comparative method was implemented, which allows the data, including the participants voice, to speak for itself (Glasser & Strauss, 1967). Three rounds of coding were implemented starting with open-source coding (Creswell & Poth, 2018). The codes from the first round were then analyzed using axial coding, where the relationships of codes were used to establish categories (Creswell & Poth, 2018; Glasser & Strauss, 1967). The final round implemented selective coding, allowing the overarching themes to emerge as core themes and variables linking back to the conceptual framework established by Gill et al. (2010) which connected to the factors established within McClelland’s (1987) motivational needs theory.

Within a qualitative inquiry it is imperative that the research team aim to address the four criteria provided by Privitera (2017) to ensure trustworthiness (i.e., credibility, transferability, dependability, and confirmability). Using interview transcripts, audio/video recordings, and interviewer field notes allowed the true opinions of the 4-H families to be reflected in the study, which addresses credibility (Privitera, 2017). Although this qualitative inquiry was limited to four families, all families participating in virtual 4-H programming during the COVID-19 pandemic in South Carolina had the opportunity to participate and the families who did participate represented different parts of the state, different 4-H age classifications of the youth (i.e., Cloverbud, Junior, and Senior), and participation in the different virtual programs offered, allowing this data to have transferability across the state. Implementing the focus group style interview with a flexible interview protocol and the varying characteristics of participants allows for consistent data collection (Privitera, 2017). Allowing the perspectives of the families to be represented in the findings and not the researchers bias speaks to the confirmability of this study (Privitera, 2017), which was addressed through the established interview protocol, three round coding process, member checks, and interpretation of data sources.

Reflexivity Statement

Palaganas et al. (2017) suggested that researchers acknowledge their inherent bias related to their study and disclose their identity to offer reflexivity. The research team for this study consisted of a graduate student in agricultural education, who was also an active 4-H youth development educator, along with three faculty members in agricultural and extension education at Clemson University and North Carolina State University. The graduate student had worked in Extension for eight years and was completing a degree in agricultural education at Clemson University. The three faculty members have more than 40 years of experience combined in agricultural and extension education. Overall, the research team recognized their bias toward Extension because of their professional roles and felt they addressed the biases through the established procedures and trustworthiness of the study.

Findings

The focus group interviews were analyzed allowing categories to emerge related to the youth and parents’ perceptions of the virtual 4-H programming offered during the COVID-19 pandemic. The emerging codes and themes resulted in two overarching categories, including communication and 4-H agent/volunteer leader impact.

Category 1: Communication

The first category to emerge throughout was communication. Communication was then divided into two themes: pre-COVID-19 and during-COVID-19 to represent the participants’ perceptions. Family #1 [mom] mentioned they were impressed with the level of communication and the amount of programming offered. They said that it seemed like there were more newsletters sent out and that there was more information within those newsletters compared to before COVID-19. Family #1’s mom wrapped up the conversation with, “you guys have done an off the charts, valiant job with communication when it’s just been such a difficult year.” Family #2 [the parents] detailed how there has been little to no communication on the county level. “Well, it’s been zero communication from the county level, and we have a child serving as a county club officer,” said Family #2’s mom. She also said, “we just feel very really sad because there are so many possibilities under 4-H that are so incredible, so I feel like not only did we lose, and not just because of the pandemic, we didn’t feel like we were part of it anymore.” The few details they had about 4-H activities offered during COVID-19-related closures they found on their own through the state social media pages or the state 4-H website.

Family #2 reported no communication from both their local agent and their local club’s volunteer leader. The family also commented that they had just recruited a new family to join their local group, so it was especially frustrating that this new family joined and received zero information. This was not an issue prior to COVID-19. Family #3 [mom] complimented the marketing strategies and graphics used for marketing throughout the COVID-19 pandemic. Upon seeing a ‘random Facebook ad’ for South Carolina 4-H@Home, Family #3’s mom signed up to begin receiving the daily emails. Family #3’s mom said that her sorority sister was a part of 4-H growing up, so she had heard of 4-H before. She also stated, “all of the advertising led me to contact our local county 4-H agent to get my son signed up.” Prior to COVID-19-related closures, Family #3 was not aware of local 4-H programming. Family #4 commented that their 4-H agent does a “good job” of communicating. Family #4’s youth were very active in county and statewide projects and held leadership positions locally. Family #4’s local 4-H agent was known for publicly advertising 4-H programming through various methods pre- and during-COVID-19. The facial expressions and non-verbal cues demonstrated in the Zoom recordings and documented in the interviewer notes furthered the emotions documented in the comments above. For example, Family #2 was obviously frustrated by the lack of communication, you could clearly see they had higher expectations from previous experiences with 4-H and really wanted the experience to continue to be a positive one for their family and others they recruited.

Category 2: 4-H Agent/Volunteer Leader Impact

The second category from the focus group was 4-H agent/volunteer leader impact. All four families had something to say regarding the leadership within the county where they participated. 4-H agent/volunteer leader impact can further be divided into positive and negative impact themes. Family #1 described the positive impact of their local 4-H agent: “our local agent is so gifted in matching the child with what will both be interesting to them and what will grow them and push them just a little bit at just the right time.” Family #1’s mom went on to compliment the other local agents the family works with, as well as the state staff. Family #2’s parents described the negative impact of their local 4-H agent/volunteer leader regarding an issue with the local organization before COVID-19 closures, but it seemed to be “explained away enough” and that they would let it slide after eventual communication. Family #2’s parents also mentioned that they were not “on the same standing as others” because they were not originally from their county, like their local leadership. Family #2 described their local 4-H agent as normally being a good agent, but “they [agent] just did not really step up during the pandemic.”

The disappointment and frustrations continued to build from Family #2, but the other families did not let the negative perceptions of one’s experience impact their overall perception of the impact of their 4-H agent/volunteer leader. Family #3’s mom said due to their participation in 4-H@Home, they were able to connect with their local agent. She said it was the best thing they could have done because the local agent is “wonderful.” Family #3’s local agent was complimented on their skills to work with younger children and that they are so welcoming. Family #3’s mom stated “[our agent] always provides a plethora of information for any activity and it helps so much since we are a brand new 4-H family.” Family #4’s 4-H member conveyed they like working with their local agent and that they do a “good job.” Family #4’s 4-H member also does a lot of projects that aligned with the expertise of the local 4-H agents and the excitement of the common interest was obvious in the videos and noted in the interviewer notes.

Conclusions, Implications, and Recommendations

Based on the focus group participants’ interviews, their 4-H agents should be commended for the programming made available during the Covid-19 pandemic, underscoring the fact that Extension professionals and volunteers were able to successfully pivot 4-H programming from predominately in-person to predominately virtual (Arnold & Rennekamp, 2020). “Virtual Programming did not eliminate the need for a local connection – it only highlighted the importance of a local connection who was a broker of education among: (a) networked programs, (b) local audiences, and (c) the land-grant institution” (J. L. Donaldson, personal communication, July 6, 2021).

McClelland’s (1987) need for achievement theory was useful for understanding 4-H retention among participating families. This theory warrants additional research, as we do not know the extent to which the needs of youth and families may have changed due to the pandemic and the associated fear and loss. The pandemic created substantial trauma, isolation, and loss of relationships (Arnold & Rennekamp, 2020). 4-H youth development programs may need to respond with discrete programs to promote mental and emotional health.

Family #1’s virtual experience and the local 4-H agent’s efforts met all three of McClelland’s (1987) needs: (1) achievement, (2) affiliation, and (3) power. Family #1’s mom reflected on how her older children became stronger leaders in 4-H through the local ambassador program and helped their younger siblings participate through 4-H kits. She [mom] said, “I really appreciated the Journey to Mars kit because my [age] year old was able to use it as a leadership opportunity on her resume for our local STEAM club.” Unfortunately, due to Family #2’s experience, none of McClelland’s Needs were met. The family recalled no communication from the local agent or volunteer, which was especially troubling to them since their two children were local club officers. Family #3’s experience allowed for two of McClelland’s (1987) needs to be met: achievement and affiliation. Because the 4-H member interviewed was very young and brand new to the program, they did not serve in any leadership roles. Family #3’s agent made opportunities available for youth to experience all of McClelland’s (1987) needs, despite this participating member’s young age. Family #4’s positive experience allowed for all three of McClelland’s needs to be met. Also, because of the opportunities Family #4’s local agent provided; McClelland’s (1987) needs were easily met.

Regarding communications, families appreciated the more frequent and detailed communication from county programs, as well as the improved marketing efforts. Despite this success, some areas for improvement were noteworthy. One family recalled not knowing if 4-H still existed in their county or in South Carolina due to the lack of communication. Communication is one of the most important skills within Cooperative Extension, especially 4-H. Ultimately, this related to the need for affiliation and the need for achievement (Gill et al., 2010; McClelland, 1987) for success, as it is essential for 4-H youth to feel connected to the youth organization (i.e., 4-H), the organization leader, and their friends, while perceiving the availability of engagement opportunities. Unfortunately, a lack of communication and limited opportunities (with the agent and programming) to engage hindered some families’ perceptions related to their members’ ability to be affiliated and obtain a sense of achievement.

Another category from this study was 4-H agent and volunteer impact. Families interviewed were asked about their relationship with the local 4-H agent or volunteer they worked with the most. Families #1, #3 and #4 described a positive relationship and praised their agent. Family #2 stated they have been working with a local volunteer and their 4-H agent and ever since COVID-19 pandemic closures, the impacts have been negative. From this focus group, it was clear that 4-H agents and volunteers can make or break the decision to join or re-enroll in a county program. If the need for affiliation is not met (McClelland, 1987), the retention of 4-H can be negatively impacted, ultimately affecting program quality (Gill et al., 2010). This became evident with the focus group interviews as families were either planning to remain or leave 4-H based on their perception of impact of the agent/volunteer leader.

While it is easy to implicate county 4-H agents for a lack of communications and a lack of programming during COVID-19-related closures, it is imperative to understand the challenges faced by Extension 4-H professionals and volunteers. Israel et al. (2020) described how COVID-19 affected Extension agents with having to manage work-life balance with multiple interruptions that could have affected programming efforts and communication with clientele. Extension agents and volunteers could have been dealing with the virus themselves or caring for an infected family member; caring for an elderly parent, family member, or neighbor; and/or may have needed resources to conduct regular work while quarantined at home. The pandemic took a toll on people in many different ways, but perhaps this was exacerbated with Extension Professionals in South Carolina as they were trying to learn a new platform (i.e., Zoom, Microsoft Teams, Google Meets) that they were not entirely comfortable with while simultaneously engaging with their clientele (Eck et al., 2022).

It should be noted that this study was limited to four families who participated in virtual programing during the pandemic is South Carolina and agreed to attend the focus group interviews for this study. Extension programming, especially youth programming, varied state by state and educator by educator, therefore the findings of this study were restricted to the views of the participating families’ experiences. Although limitations existed within the study, the findings, conclusions, and recommendations provided an opportunity for transferable results and best practices for those with similar needs and/or responsibilities within Extension programming. It was the responsibility of the research team to carry out the study based on the intended purpose, but it is up to the reader and potential applier of the results to make a judgement on the transferability of the study (Lincoln & Guba, 1985).  

State 4-H leaders are not only recommended, but highly encouraged, to create a best practices list for virtual 4-H programming. Designed by the researchers’ reactions to the data and their personal experiences, Table 1 outlines best practices to guide agents and volunteers in communicating with their clientele. Several of the best practices listed in Table 1 revolve around technology and Internet deficits experienced by many youth and their families (Evans et al., 2021). Gordon and Curlee (2011) remind us that good communication is essential in organizations and it is not productive for people to become quiet. They also state, “often, people ignore issues they shouldn’t” (Gordon and Curlee, 2011, p. 137) which can cause a snowball effect of issues building and success within the organization jeopardized. “Organizations can no longer rely on one-way communication methods to interact with stakeholders” (Holthausen et al., 2021, para. 31). Therefore, 4-H programs should be advertised via multiple methods such as online, hardcopy, television, or radio media. A list of best practices may be especially valuable for newly hired 4-H professionals who may or may not have the opportunity to be part of on-boarding procedures.

Table 1

Best Practices for 4-H agents, educators, specialists, and volunteers in Virtual Programming

Best Practice
Establish multiple methods of communication with county participants.
Create a contact list of people on the local, regional, and state level who can provide more information on virtual programming.
Advertise programs via online, hardcopy (mail/newspapers), television, or radio media.
Establish if 4-H participants will need to print materials used in virtual program.
Complete midway and end of the activity/program check-ins with the participants.
Offer to schedule (in-person or at-a-distance/Zoom) visits with participants to stay updated on them throughout the program year.

Future research should be explored using more families for interviews to gain a better understanding of 4-H leader impact. It is also recommended that in-person focus groups are held, with the option of virtual meetings via video conference. Based on the interviews conducted, it was evident the parents dominated the conversations as if the parents were vicariously giving accounts for the children. Based on this knowledge, it is recommended that the interviews be split into a conversation with parents only, and a separate conversation with just youth. Additionally, the questions and topics discussed within future research should be expanded to include use of the life skills learned in 4-H among 4-H members.

Overall, three of the four families interviewed for this study were pleased with their 4-H agent and volunteer’s impact and levels of communication during and post-COVID-19. There is room for improvement in both categories. 4-H agents and volunteers should continuously work on ways to improve their communication and teaching styles. These same caring adult leaders should not only think of youth, but also themselves when striving to “make the best better.”

References

Arnold, M. E., & Rennekamp, R. A. (2020). A time like no other: 4-H youth development and COVID-19. Journal of Extension, 58(3). https://joe.org/joe/2020june/comm1.php

Baney, C. N. M., Jones, K. R. (2013). Whatever it takes: A comparison of youth enrollment trends in 4-H livestock and non-livestock programs. Journal of Extension, 51(3). https://archives.joe.org/joe/2013june/rb2.php

Burnett, M. F., Johnson, E. C., & Hebert, L. (2000). The educational value of 4-H activities as perceived by Louisiana 4-H agents. Journal of Agricultural Education, 41(1), 49– 59. https://doi.org/10.5032/jae.2000.01049

Calvert, M., & Fabregas Janeiro, M. G. (2020). Impact of COVID-19 on Missouri 4-H state fair participation and implications for youth development programs. Journal of Extension, 58(6). https://www.joe.org/joe/2020december/comm1.php

Cooper, A. W., & Graham, D. L. (2001). Competencies needed to be successful county agents and county supervisors. Journal of Extension, 39(1). https://archives.joe.org/joe/2001february/rb3.php

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry & research design: Choosing among five approaches (4th ed.). Sage.

Eck, C. J., Layfield, K. D., DiBenedetto, C. A., Jordan, J. K., Scott, S. O., Thomas, W., Parisi, M., & Dobbins, T. (2022). Assessing awareness and competence of best practices in synchronous online instruction during the COVID-19 pandemic for Clemson Cooperative Extension Professionals. The Journal of Extension, 60(1). https://doi.org/10.34068/joe.60.01.09

Evans, C., Moore, R., Seitz, S., Jatta, I., Kuperminc, G. P., & Henrich, C. C. (2021). Youth perspectives on virtual after-school programming during the COVID-19 pandemic. Journal of Youth Development, 16(5), 251-268. https://doi.org/10.5195/jyd.2021.1063

Gill, B. E., Ewing, J. C., & Bruce, J. A. (2010). Factors affecting teen involvement in Pennsylvania 4-H programming. Journal of Extension, 48(2). https://archives.joe.org/joe/2010april/a7.php

Glasser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine.

Glesne, C. (2016). Becoming qualitative researchers: An introduction (5th ed.). Pearson.

Gordon, R. L., & Curlee, W. (2011). The virtual project management office: Best practices, proven methods. Management Concepts.

Gould, F. I., Steele, D., & Woodrum, W. J. (2014). Cooperative extension: A century of innovation. Journal of Extension, 52(1). https://www.joe.org/joe/2014february/comm1.php

Grégoire, H. (2004). Gathering wisdom from 4-H youth development clubs. Journal of Extension, 42(3). https://www.joe.org/joe/2004june/a5.php

Holtzhausen, D. R., Fullerton, J. A., Lewis, B. K., & Shipka, D. (2021). Principles of strategic communication. Routledge.

Hood, E. L. B. (2021). Were the “best made better” without in-person programming? Content analysis of extension 4-H programming during the COVID-19 pandemic in South Carolina (Publication No. 28650263) [Master’s thesis, Clemson University]. ProQuest Dissertations and Theses at Clemson University. https://tigerprints.clemson.edu/all_theses/3613

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. SAGE.

Loose, C. C., Ryan, M. G. (2020, November 11). Cultivating teachers when the school doors are shut: Two teacher-educators reflect on supervision, instruction, change and opportunity during the Covid-19 pandemic. Frontiers in Education, 5(582561). https://doi.org/10.3389/feduc.2020.582561

McClelland, D. C. (1987). Human motivation. Cambridge.

McNeill, B. (2010). The important role non-parental adults have with youth learning leadership. Journal of Extension, 48(5).https://www.joe.org/joe/2010october/tt4.php

Monks, C. D., Hagan, A., Conner, K. (2017). Emphasizing extension’s unbiased, research-based recommendations is critical. Journal of Extension, 55(5). https://archives.joe.org/joe/2017october/comm1.php

Pardee, R. L. (1990). Motivation theories of Maslow, Herzberg, McGregor & McClelland. A literature review of selected theories dealing with job satisfaction and motivation. https://eric.ed.gov/?id=ed316767

Price, P. C., & Jhangiani, R. S. (2018). Research methods in psychology. Open Textbook Library.

Privitera, G. J. (2017). Research methods for the behavioral sciences (2nd ed.).SAGE.

Salkind, N. J. (2012). Exploring research (8th ed.). Prentice Hall.

Implications of Pandemic Responses for Extension Education and Outreach

Samuel Quinney, Clemson Extension, squinne@clemson.edu
Grace Greene, Clemson University, mgg2@g.clemson.edu
Christopher J. Eck, Oklahoma State University, chris.eck@okstate.edu
K. Dale Layfield, Clemson University, dlayfie@clemson.edu
Thomas Dobbins, Clemson University, tdbnns@clemson.edu

PDF Available

Abstract

As part of daily tasks of Cooperative Extension, agents handle public issues by offering programming by approved methods to inform the public. Within the context of this study, a mixed-methods approach was established to determine the factors impacting behaviors associated with Clemson Extension, programming efforts, and roles during the COVID-19 pandemic. Understanding the attitudes and perceptions of Extension educators and key stakeholders (i.e., advisory committee members), researchers, faculty, and Extension educators can be better prepared to face future challenging while continuing to meet the public demand. This exploratory, mixed methods inquiry investigated the perceptions of current Clemson Extension agents across South Carolina and Extension advisory committee members related to the ongoing COVID-19 pandemic and Extensions response. To meet the needs of this mixed methods approach, qualitative interviews were conducted with Extension agents and a survey questionnaire was utilized to collect pertinent data from Extension advisory committee members. Through this study, strengths and challenges for South Carolina Cooperative Extension Agents during the COVID-19 pandemic were learned, providing a framework in the event of similar challenges in the future. Adaptability is key moving forward for Extension, as it allows Extension agents to meet the needs in their communities, serve their primary stakeholder groups, and improve overall perceptions of what they offer. Extension professionals should consider the findings as a starting point to evaluate the current state of Extension programming and how to best move forward to address pertinent agricultural issues.

Introduction/Theoretical Framework

“The pace of innovation in the agriculture-related, health, and human sciences demands that knowledge rapidly reaches the people who depend on it for their livelihoods” (USDA-NIFA, 2021, para. 1). Specifically, the Clemson Cooperative Extension (2021) service aims to “improve the quality of life of all South Carolinians by providing unbiased, research-based information through an array of public outreach programs in youth development; agribusiness; agriculture; food, nutrition and health; and natural resources” (para. 1). The normal day to day operations of Clemson Extension was brought to a halt on March 18th, 2020, after the World Health Organization (2020) declared the Novel Coronavirus or COVID-19, a global pandemic on March 11, 2020.

As part of daily tasks of Cooperative Extension, agents handle public issues by offering programming by approved methods to inform the public (Dale & Hahn, 1994; Patton & Blaine, 2001). Most issues originate as private concerns and become public when outside agencies become involved and widespread support or opposition is gained. This is often related to an identifiable problem, whereas others may arise from misinformation or inaccurate perceptions (Patton & Blaine, 2001). These contentious issues often create situations in which public input and education can be keys to solving the problem; however, due to the highly charged nature of such issues, many leaders tend to avoid them (Jolley, 2007; Patton & Blaine, 2001; Rittel & Webber, 1973). Clemson extension has always made it a priority to provide relevant programming to address these public issues.

During today’s societal changes of the COVID 19 Pandemic, agricultural communities have faced challenges. According to the United States Department of Agriculture (USDA) Economic Research Service (ERS) (2021), the total number of cash receipts by commodity has remained steady, with some commodities increasing between the years 2020 and 2021. Animals and animal products increased just under $8.6 billion, and crops increased just over $11.8 billion via cash receipts reported by the USDA-ERS (2021). Some of these increases in consumer purchases have come through governmental policies, which increased American agriculture commodity purchases from foreign countries under the US and China trade deal. China will purchase and import $40 billion dollars’ worth of American agriculture products including meat goods (McCarthy, 2020), others came from a decrease in store availability, though no nationwide shortages have been reported (USDA, 2021). Though the total cash receipts have improved nationally, local agriculture producers face a distinct set of issues. Such issues include a misinformed public, slaughterhouse backups, and a lack of land availability. However, the agricultural cash receipts have yet to be reported for South Carolina according to the USDA-ERS (2021).

Clemson Extension was not alone, as schools, businesses and government agencies across the U.S. adapted to limit in-person contact (CDC, 2020). Extension agents had to cancel some scheduled programming and events and shift what they could to virtual platforms, such as Zoom, which has been identified as easy-to-use and engaging (Robinson & Poling, 2017). With the pandemic catching most off-guard, little account was taken into the perceptions, attitudes, and beliefs of Clemson Extension agents and advisory groups. To frame the evaluation of these concerns, the theory of planned behavior (Ajzen, 1991) was implemented (see Figure 1).

Figure 1

Ajzen’s (1991) Theory of Planned Behavior Model

The theory of planned behavior (Ajzen, 1991) “provides a useful conceptual framework for dealing with the complexities of human social behavior” (p. 206), as it provides a frame to outline the predictability of an individual’s future plans and behaviors (Ajzen, 1991). The theory of planned behavior has further been implemented (Murphrey et al., 2016) to evaluate one’s perceptions and/or intentions related to formal and informal training (i.e., Extension programming). Within the context of this study, a mixed-methods approach was established to determine the factors (i.e., attitude toward the behavior, subjective norms, and perceived behavioral control) impacting behaviors associated with Clemson Extension. Specifically, programming efforts (i.e., attitudes), roles (i.e., norms), issues (i.e., attitude and perceived control), and solutions (i.e., intentions) were addressed to establish best practices learned from the COVID-19 pandemic. Understanding the attitudes and perceptions of Extension educators and key stakeholders (i.e., advisory committee members) allows researchers, faculty, and Extension educators to be better prepared to face future challenges while continuing to meet the current public demand.

Purpose and Research Objectives

During today’s societal changes, Clemson Extension has expanded its role to provide education to the public through virtual and other non-contact options. Therefore, this study aimed to determine the perceptions of Clemson Extension agents and the prevalent issues faced within the agriculture community in the South Carolina by interviewing Extension agents and surveying Clemson Extension advisory committee members. Four research questions were developed to guide this study:

  1. Describe the current perceptions of Clemson Extension agents amidst the COVID-19 pandemic.
  2. Identify the greatest issues facing agriculture in South Carolina according to advisory committee members during the COVID-19 pandemic?
  3. Determine current and potential solutions from Clemson Extension to address the issues faced during the COVID-19 pandemic.
  4. Create a list of preferred programs and program delivery methods for future Extension programming.

Methods

This exploratory, mixed methods inquiry investigated the perceptions of current Clemson Extension agents across South Carolina (N = 154) and Extension advisory committee members (N = 64) related to the COVID-19 pandemic and Extensions response. To meet the needs of this mixed methods approach, qualitative interviews were conducted with Extension agents (n = 6) and a survey questionnaire was utilized to collect pertinent data from Extension advisory committee members.

Qualitative Inquiry Procedures

As with most qualitative inquiries, this study sought to provide rich information from the Extension agents as they adapt with the changing dynamics of the pandemic. A purposive sampling strategy was implemented to reach data saturation amongst the variety of agents across the state. This sampling method included soliciting participation from agents from all five regions and 10 program teams, resulting in interviews with six agents representing five program teams and all five regions spanning 15 counties, as some agents work in multiple counties. For proper tracking of data, each participating agent was provided a pseudo name that is outlined in Table 1.

Table 1

Clemson Extension Agents Who Participated in the Study (n = 6)

Pseudo Name Sex Region Program Team 
Shawn Male Region 4 Horticulture 
Abigail Female Region 1 4-H Youth Development 
Violet Female Region 5 Livestock & Forages 
Leonard Male Region 3 Forestry & Wildlife 
Keith Male Region 4 Agronomic Crops 
Taylor Male Region 2 Horticulture 

To address the overarching research objective of the qualitative inquiry, a flexible interview protocol was established spanning four topic areas, including: 1) Accessibility and program impacts; 2) Responding in a time of crisis; 3) Remote instruction and distance education; and 4) Economic and communication concerns early in the COVID-19 pandemic. Each topic area included probing questions to help facilitate conversation, helping to uncover the specific paradigm being studied. Glesne (2016) identifies the specific paradigm or reality being evaluated within this study as an ontology, as the study aimed to discover and individuals’ beliefs associated with their current reality, further connecting to the theory base (Ajzen, 1991) as we try to uncover future intentions. The interview protocol was checked for face and content validity (Salkind, 2012) by two faculty members with teaching and research experience in Extension education and research methodology. All six interviews were conducted by an undergraduate student minoring in Extension education following the interview protocol for consistency. Additionally, a fieldwork notebook was compiled by the interviewer to document the interview experiences through observation notes, interview notes, and reflexive thoughts (Glesne, 2016).

The interviews were conducted using Zoom due to the ongoing COVID-19 pandemic and University regulations. The interviews were recorded and transcribed using features embedded in the Zoom platform, which were then compared against one another for accuracy. In addition to the interview recordings and transcriptions, interviewer notes were used for triangulation of data. To further increase the trustworthiness of the study, the research team followed the recommendations of Privitera (2017) to establish credibility, transferability, dependability, and confirmability within the study. Creditability was addressed through coding member checks across the research team to reduce bias (Creswell & Poth, 2018) along with triangulation of data and saturation of emerging categories (Privitera, 2020). To enhance transferability the researchers described the participants (including pseudonyms), detailed the interview and data analysis process, and highlighted the perspectives of the participants. Procedural explanations and data triangulation furthered the dependability of the research (Creswell & Poth, 2018; Privitera, 2020), and a reflexivity statement was included to describe any inherent biases associated with then phenomenon (Privitera, 2020).

Confirmability refers to the objectivity of the findings and the ability to interpret the narrative of the experience of participants to determine the essence of the phenomena instead of the researcher’s bias (Creswell & Poth, 2018; Privitera, 2020). A reflexivity statement describes the researchers previous understanding of the phenom

To analyze the interview transcripts through a qualitative lens, this study implemented the constant comparative method (Glasser & Strauss, 1967), which permits the data to speak for itself, allowing themes to emerge. The first round of coding used open-coding sources, allowing themes to emerge through the process (Creswell & Poth, 2018). Axial coding was followed for second-round coding, where the relationships between open codes resulted in overarching categories (Creswell & Poth, 2018; Glasser & Strauss, 1967). Round three of coding was selective coding, where the researchers determined the core variables from the qualitative interviews.

The purposive sampling provides a limiting factor as only six Clemson Extension agents were interviewed for the purpose of this study. Therefore, the findings of this study are limited to the views of the participants and not necessarily that of all agents in the state, but the findings of the study can be used to inform practice, guide future research, and potentially offer state-wide implementations based on needs. The research team recommends caution when looking to generalize the data, although the data has transferable qualities if the readers deem the population and situations identified as germane to their inquiry.

Within a qualitative inquiry, Palaganas et al. (2017) recommends for researchers to acknowledge any inherent bias and reveal their identify to offer reflexivity. The research team consisted of two faculty members in agricultural education at Clemson, a current Extension educator, and an undergraduate student pursuing a minor in extension education. The faculty members have more than 30 years of experience combined in agricultural and extension education. We recognize our bias toward Extension because of our faculty roles and have attempted to harness that bias through a consistent interview protocol, interviewer, and extensive field notes.

Survey Research Procedures

This non-experimental descriptive survey research component aimed to reach Clemson Extension advisory committee members (N = 64) in Abbeville, Anderson, Greenville, Oconee, and Pickens counties in South Carolina. The counties selected to participate in the survey were selected for their vast differences, including suburban, rural agriculture/homesteads, small towns, and large cities. The populations of the participating counties were Greenville – 507,003; Anderson – 198,064; Pickens – 124,029; Oconee – 77,528, and Abbeville – 24,627 (United States Census Bureau, 2021).

The questions addressed in this study were designed to assess how the Clemson Cooperative Extension Service adapted during the COVID 19 pandemic. Survey questions were divided into three categories, 1) Agricultural issues, 2) Extension programming, and 3) Participant demographics. The agricultural issues category elicited open ended responses to determine the greatest issues facing agriculture and what Clemson Extension is and can do to help the issues. The second category aimed to determine the preferred program delivery methods and primary program teams of interest. The researcher-developed survey was reviewed for face and content validity by Agricultural Education faculty and Clemson Extension professionals.

Of the 64 advisory members who received the survey via email, 27 responded, resulting in a 42.2% response rate. Participants were 55.6% male and 44.4% female and ranged in age from 29 to 73 years old, with agricultural involvement varying from pre-production/production agriculture to agricultural consumers (see Table 2) across the five counties. Data was analyzed using SPSS Version 27 to address the proposed research questions.

Table 2

Personal and Professional Demographics of Extension Advisory Committee Members in South Carolina (n = 27).

Demographics   f %
Gender Male 15 55.6
  Female 12 44.4
  Prefer not to respond 0 0.0
Age 21 to 30 1 3.7
  31 to 40 5 18.5
  41 to 50 3 11.1
  51 to 60 8 29.6
  61 to 70 4 14.8
  70 or older 6 22.2
  Did not respond 0 0.0
 Current Role in Agriculture Pre-Production  7.4 
Production1452.9
Consumer1037.03
 Did not respond 1 3.7

Findings

Research Question 1: Describe the current perceptions of Clemson Extension agents amidst the COVID-19 pandemic.

The emerging codes, themes, and categories were used to explain the perceptions of Clemson Extension agents related to the ongoing COVID-19 pandemic. Four overarching categories emerged from the findings.

Category 1: Extension is Adaptable

 Keith stated, “we’re used to getting things thrown in our lap, everybody in the world or everybody in the country says, you have any questions call your county extension agent,” which reinforced this concept. When considering the COVID-19 pandemic, Keith went on to say, “as far as agronomy agents and a lot of the horticulture agents, we’ve never quit visiting farmers, when they call, we go.” The changes caused by the pandemic looked different across the state, depending on the needs of community, which was encompassed through the thoughts of Extension professionals “adapting every single day and the pandemic just made it a big step, as opposed to little steps. We just had to figure out a way to continue to do what we’re already doing, just in a different format” (Leonard). Other interviews built upon these same lines of thought to demonstrate the overall adaptability of Clemson Extension.

Category 2: Need for Training and Resources

The greatest need indicated across the interviews was specific training and resources to help Extension professionals and constituents navigate the pandemic. Keith simply stated that “everybody’s been putting out fires and handling their own problems … and I think some help and some guidance with all our delivery programs would be great.” Abigail further identified “a big chunk of people who are probably [her] age and younger and then a couple of older ones who … are more traditional, who need some help.” The participants identified specific training needs for agents across the state related to Zoom, virtual programming, and mental health of both adults and youth, “because as the times change, new stuff comes up.” Additional resources were also discussed by participants as many Extension professionals “live out in the middle of nowhere and Internet does not come to [their] house” (Shawn), requiring them to work of a limited data hot spot, when the data is gone, they are without internet. Participants also expressed a need for computers “that can handle Zoom,” so they can utilize Zoom features and provide essential programming to constituents. The final resource need is for the community members Extension professionals aim to reach, as many farmers and ranchers struggle to engage using technology, which Leonard explained that “it’s not necessarily that they can’t do it, a lot of them just don’t have the ability. Your rural areas just don’t have computers.”

Category 3: Community Perceptions

Perceptions of the communities Extension professionals serve was expressed by Violet as, “we’ve been at this so long, I wonder about our relevance… I’m still making farm visits, but a lot of people think we’re closed.” Similarly, Taylor struggled “going from what we normally do and being the face of the public and the face of the university to everything [moving] online, was tough. The biggest struggle was getting over the hill of convincing yourself that this is the way it’s going to be and then having to convince clientele that this is the way it’s going to be for a little while.” The change in delivery was difficult for all involved and many are concerned with the impact of the pandemic on the relationship between the Extension professional and the clientele moving forward. Which, Violet expressed as her “greatest concern, is how to bring those people back and have them trust us again and know that we’re still working, we’re still here and we still deserve to be paid, that sort of thing. I’ve heard all those things so that’s probably what I’m worried about the most.”

Category 4: Reluctancy to New Methods

Violet explained that “certainly the Zoom capabilities are good, but there’s been some reluctance to use them from our older crowd, and, unfortunately most farmers are 65 and older.” She went on to express the hardships as “it’s been a little bit hard to pull them [older farmers] in and get them to really feel connected. They like our meetings for the information side of it, but also the community feel, and I think you do lose a little bit of that with the virtual sense or virtual realm.” In contrast, Taylor found a positive side to the new methods as “we’re reaching a lot more people, especially on our side of the team that probably wouldn’t normally come to a meeting because they can just jump on a computer now.” But he also went on to explain the reluctance as “a majority of our clientele is older, the Zoom thing is tough for them, the technology piece is tough… We picked up a lot of clients… but we probably have some frustrated clients because of it.”

Research Question 2: Identify the greatest issues facing agriculture in South Carolina according to advisory committee members during the COVID-19 pandemic?

The second research question focused on determining the greatest issue(s) currently facing the agricultural industry in South Carolina. Of the 27 respondents, two primary issues arose, the cost/lack of agricultural inputs and outputs, and the need for local produce and meat products. Table 3 outlines underlying issues that make up those broader categories.

Table 3

Greatest Issues Facing South Carolina Agriculture (n = 27)

CategorySpecific Issues
Cost/Lack of Agricultural Inputs and OutputsLand, Seed, Feed, Fertilizer, Chemicals; Slaughter Facilities
 Increased Cost due to Urban Sprawl; Market Fluctuations
Need for Local Produce and Meat productsCOVID Restrictions; Farmers Market and Open-Air Markets Closed

Research Question 3: Determine current and potential solutions from Clemson Extension to address the issues during the COVID-19 pandemic.

The third research question addressed the current and potential solutions Clemson Extension is currently providing or could provide to address issues in agriculture. Table 4 outlines the current solutions being offered, although 14.8% of respondents felt that nothing was currently available. The two current solutions include agricultural education and agricultural land loss prevention. Specifically, agricultural education represents the Making It Grow programming offered through South Carolina Educational Television (SCETV), information provided by the Home Garden Information Center (HGIC), 4-H youth development programming, and Extension programs/Education. The second solution to currently assist agriculturalists is the agricultural land loss prevention program focused on agricultural land easements offered through the USDA-NRCS office.

Table 4

Solutions Available for Current Agricultural Issues (n = 27)

Current SolutionsSpecific Program/Offering
Agricultural EducationMaking it Grow
 HGIC
 4-H Youth Programming
 Extension Programs/Education
Agricultural Land Loss PreventionAgricultural Land Easements-NRCS

In addition to current programs, respondents’ ideas for potential solutions were of interest to the research team. Respondents identified two categories of solutions, the first being to publicize Extension programs and services better, so the public have a better understanding of what Extension does and what is being offered. The second solution was an increase in agricultural education, specifically targeting small farms and farming for-profit programs, additionally youth education opportunities, along with specific education programming highlighting the historical importance of agricultural land and keeping that land in agricultural production. Much of this was connected to 56% of respondents identifying COVID-19 as having a specific impact on agriculture in the state. Specifically, one of the greatest concerns was the impact of virtual programming during the COVID-19 pandemic, as many individuals did not have access to virtual programming due to lack of technology or internet. A potential option that was presented was being sure to offer recorded (asynchronous) programming options versus the live (synchronous) options currently available.

Research Question 4: Create a list of preferred programs and program delivery methods for future Extension programming.

The final objective aimed to establish the preferred program delivery methods for future extension programming, along with current and future program interests. Table 6 outlines the preferred information delivery method of respondents.

Table 6

Preferred Information Delivery Method (n = 27)

Delivery Methodf%
Email933.3
Office Visits622.2
No Preference622.2
Farm Visits13.7
Phone13.7
Text Updates13.7
Fact Sheets13.7
Postal Mail13.7
Social Media13.7

In addition, 55.6% of participants said they would be willing to participate in future virtual programming if offered, while 22.2% of participants said they would not participate, and the remaining 22.2% were unsure. To further understand programmatic interests, participants were asked to identify which of the Clemson Extension Program teams had provided the most information during the pandemic, Table 7 outlines their responses.

Table 7

Programmatic Teams Offering the Most Programming During COVID 19

Program Teamf%
4-H725.9
Unknown622.2
Forestry and Wildlife414.8
Agricultural Education311.1
Horticulture311.1
Food Systems and Safety27.4
Livestock and Forages13.7
Rural Health and Nutrition13.7

Although 4-H was reported as the program team providing the most programming during the pandemic, participants expressed the most interest in more programming from the forestry and wildlife team (33.3%), followed by the agricultural education and livestock and forages teams, both with 26% of the respondents interested. The agribusiness team (22.2%) and the horticulture team (18.5%) rounded out the top five. The remaining program areas had less than 14% of participants interested.

Conclusions, Implications, and Recommendations

Through this study, strengths and challenges for South Carolina Cooperative Extension Agents during the COVID-19 pandemic were learned, providing a framework in the event of similar challenges in the future. As identified in the category one finding, “Extension is Adaptable,” discussed how agents continued to meet their constituent’s needs, but through use of many creative means. a benefit that will aide Cooperative Extension Agents is the ability to adapt quickly. This ability to adapt would support those aspects in the category two findings which identified a need for training/in-service of Cooperative Extension Agents and their constituents. Category three, “Community Perceptions,” is reflective of the anxiety and uncertainty that was commonly experienced during the pandemic. Shifts in time and locations of workplace during the pandemic created a variety of uninformed interpretations of staff labor and confusion among the clientele base. Category four, “Reluctancy to New Methods” was commonly thought to be a challenge, but during the pandemic, it became widely know that there are gaps in technological competencies. Altough Extension agents had negative perceptions about certain components of their ability to provide appropriate education and outreach to constituent groups, their overall intentions were positive leading to actionable behaviors (Ajzen, 1991) that made an impact in their communities and states.

According to the advisory committee members in this study, there are two primary issues (i.e., attitudes; Ajzen, 1991) facing agriculture (i.e., cost or lack of agricultural inputs and outputs and the need for local produce and meat products) in South Carolina. The first issue can be contributed to the availability of land due to urban sprawl as well as all input costs having significantly increased in spring 2021. Additionally, slaughter facilities have been waitlisted for the last year due to high demand for American meat products. The area of concern can be considered together with the first due to slaughterhouses being backed up, local meat producers are unable to get their product finished out and packed for sale. Open air markets and farmers have been under the mercy of local and federal government’s restrictions, which have limited or cancelled all opportunities for local produce to be made available (L. Keasler, personal communication, 2021). Although these issues are of concern, Extension has the opportunity to address some of them by providing timely and accurate information to those who need it most. This allows the agents to control what they can through communication, reducing the negative perception and informing stakeholders if the subjective norms (Ajzen, 1991) currently impacting agricultural production.

Extension can work with local producers to ensure that they are in contact with their local and state representatives to be made aware of the issues that American agriculturalists are facing in today’s environment. Extension can also provide more agricultural education to the general consumer to assist our agricultural producers in informing the community what issues they face to maintain their livelihood. Some things cannot be controlled, such as market fluctuations and processing facilities operation. However, agents can make public representatives aware of the issues, asking them to push these issues in front of our elected legislative bodies to enact change through governmental policies. According to Anderson and Salkehatchie counties Cattlemen’s Association members and meat producers (personal communication, January 12, 2021), the availability of funds to build more USDA certified handling facilities would increase the speed at which products can be made available to markets, as well as increase jobs in areas where these facilities are housed. Perhaps, inputs such as fertilizers and herbicides can be regulated by government to avoid price gouging when they are needed the most, making the big companies richer and the hard-working farmers pockets tighter to continue to make a living in production agriculture.

Local fruit and vegetable producers face a slightly different issue in that they are at the mercy of local, state, and federal mandates, only operating at full capacity when they are told it is safe to do so (L. Keasler, personal communication, 2021). Similarly, Extension is subject to these same mercies, although we have seemed to reach a new normal, the findings of this study can be beneficial for Clemson Extension and similar Extension agencies in other states.

The implications support the Theory of Planned Behavior (Ajzen, 1991), as agents recognized that they could adapt to meet the needs of their constituents during time of many unknowns and countless challenges demonstrates how favorable attitudes and intentions result in adaptable behaviors. These behaviors include the awareness of need for additional training and to seek resources to meet needs. Paradoxically, the resistance of many constituents to accept alternative programming methods presented opposing behaviors from the agents, creating additional challenges. Regardless, adaptability is key moving forward for Extension, as it allows Extension agents to meet the needs in their communities, serve their primary stakeholder groups, and improve overall perceptions of what they offer. Although it should be noted that many of the factors impacting Extension during the COVID-19 pandemic were outside of the Extension agents’ control, ultimately impacting the perceived behavioral control the agents had on situations (Ajzen, 1991).

Considering recommendations for Extension professionals, a need exists to better publicize programs and services offered from the county offices to increase awareness and community participation. This can be done through local news organizations such as newspapers, radio stations, social media, and news channels. Although the pandemic has provided its share of challenges, the increased availability for virtual programming has some benefits, such as being able to reach a broader audience across the state who previously never participated in Extension programming. Moving forward it is recommended that Extension consider ways to offer programming in-person and virtually to continue to expand the diversity of people being reach for programming. Perhaps, with a collaborative effort Clemson Extension could make a greater impact on the future of agriculture across the state, as agriculture makes an impact on everyone’s daily life. Extension professionals should consider the findings as a starting point to evaluate the current state of Extension programming and how to best move forward to address pertinent agricultural issues.

Realizing the conclusions and implications addressed in this study, it is recommended that Cooperative Extension Services consider the following actions:

  1. Initiate an assessment of State Cooperative Extension Service staff to develop a comprehensive guide on best management practices in the event of future events of the magnitude experienced from the COVID-19 pandemic;
  2. Develop a series of in-service offerings on communications tools for delivery of online programming, provided at different skills levels;
  3. Coordinate with agencies that provide professional development in awareness of mental health issues and recommended practices and resources available, and
  4. Establish a review team of IT experts for the Cooperative Extension Service that will develop a standard protocol to assure that technologies (laptops, scanners, etc.) needed for online delivery and required Internet access will be available for staff to successfully complete their programming remotely as needed.

References    

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision 
            process, 50
(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Centers for Disease Control and Prevention (CDC). (2020). Situation summary. https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/summary.html

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry & research design: Choosing among five approaches (4th ed.). Sage.

Dale, D. D., & Hahn, A. J. (Eds.). (1994). Public issues education: Increasing competence in resolving public issues. University of Wisconsin.     

Glasser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine.

Glesne, C. (2016). Becoming qualitative researchers: An introduction (5th ed). Pearson.

Hamilton, S. F., Chen, E. K., Pillemer, K., & Meador, R. H. (2013). Research use by cooperative extension educators in New York State. Journal of Extension, 51(3). http://www.joe.org/joe/2013june/pdf/JOE_v51_3a2.pdf

Murphrey, T. P., Lane, K., Harlin, J., & Cherry, A. L. (2016). An examination of pre-service agricultural science teachers’ interest and participation in international experiences: Motivations and barriers. Journal of Agricultural Education, 57(1), 12-29. https://doi.org/10.5032/jae.2016.01012 

Robinson, J., & Poling, M. (2017). Engaging participants without leaving the office: Planning and conducting effective webinars. Journal of Extension, 55(6). https://joe.org/joe/2017december/tt9.php

Rumble, J. N., Lamm, A. J., & Gay, K. D. (2018). Identifying Extension Agent Needs Associated with Communicating about Policies and Regulations. Journal of Agricultural Education, 59(4), 72–87. https://doi.org/10.5032/jae.2018.04072

Jolley, J. (2007). Choose your doctorate. Journal of Clinical Nursing, 16(2), 225–233. https://doi.org/10.1111/j.1365-2702.2007.01582.x

Palaganas, E. C., Sanchez, M. C., Molintas, M. P., & Caricativo, R. D. (2017). Reflexivity in qualitative research: A journey of learning. The Qualitative Report, 22(2), 426–438. https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=2552&context=tqr

Patton, D. B., & Blaine, T. W. (2001). Public issues education: Exploring extension’s role. Journal of Extension, 39(4). http://joe.org/joe/2001august/a2.html

Privitera, G. J. (2017). Research methods for the behavioral sciences (2nd Ed.).Sage.

Rasmussen, J. L. (1989). Data transformation, type I error rate and power. British Journal of Mathematical and Statistical Psychology, 42(2), 203–213. https://doi.org/10.1111/j.2044-8317.1989.tb00910.x

Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sci, 4, 155–169. https://doi.org/10.1007/BF01405730

Rogers, E. (2003). Diffusions of Innovations (5th ed.). Free Press.

Salkind, N. J. (2012). Exploring research (8th ed.). Prentice Hall.

United States Census Bureau. (2021). South Carolina counties by population. https://www.SouthCarolina-demographics.com/counties_by_population              

United States Department of Agriculture National Institute for Food and Agriculture (USDA-NIFA). (2021). Cooperative extension system. https://nifa.usda.gov/cooperativeextension-system

Clemson Cooperative Extension. (2021). Cooperative Extension. https://www.clemson.edu/extension/about/index.html

World Health Organization (WHO). (2020). Coronavirus disease 2019 (COVID-19) situationreport–51. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf’sfvrsn=1ba62e57_10

           

Climbing Jacob’s Ladder: A Phenomenological Inquiry to Understand Ugandan Farmers’ Experiences Using Fertilizers

Chandler Mulvaney, Kathleen D. Kelsey, Nicholas E. Fuhrman, & Ronald Lemo
This article examines factors influencing Ugandan subsistence farmers’ adoption or rejection of mineral fertilizers using the theory of planned behavior as a theoretical lens (Ajzen, 2011). We conducted semi-structured interviews with 30 Ugandan farmers in-situ. Participants were criterion selected based on their rate of adoption of fertilizers and membership in farmer groups. We analyzed the interviews following phenomenological research design. Four themes emerged, they were (a) we are better together, working in farmer groups improves outcomes, (b) behavioral change begins within the family and farmer groups, (c) farmers need greater access to agricultural production knowledge and inputs, and (d) changes in farmers’ knowledge leads to intentional behavior changes. The themes were summarized to generate the phenomenological essence of climbing Jacob’s ladder. The factors that influenced fertilizer adoption included being a member of a formally recognized and registered farmer group…

Read More

A Qualitative Analysis of the Challenges and Threats facing Cooperative Extension at the County Level

Lendel Narine, Amy Harder, & Priscilla Zelaya
The Cooperative Extension Service faced many challenges and threats over its history. Persistent internal challenges affecting Extension are communication with stakeholders, high employee turnover, and a marketing deficit. Common external threats included reduced funding, increases in non-traditional audiences, and inadequate facilities. Guided by a needs assessment framework, this study sought to identify the challenges and threats facing the [State] Cooperative Extension Service at the county level. Using a basic qualitative research design, the final reports from the 2016 county program reviews were used as the primary source of data. Results were consistent with the literature and showed persistent challenges facing Extension were staff limitations, marketing and communication ineffectiveness, limited program coverage, inadequate volunteer recruitment, and lack of funding…

Read More

Resiliency and Leadership of Tobacco Producers in Greene County, TN: A Qualitative Study

Melody Rose, Carrie Stephens, Ralph Brockett, Christopher Stripling, & Baylee Jarrell
The purpose of this study was to identify the perceptions of current Greene County burley tobacco producers in a declining global tobacco industry. The central research question was “How have you maintained your leadership and resilience in burley tobacco production in Greene County?” Ten Greene County producers participated in this study through an interview conducted utilizing a series of 33 questions aimed at determining specific themes regarding resiliency in their communities, as well as the individual producers’ adaptive leadership styles. Data collected from interviews were synthesized to correlate perceptions of current tobacco production in Greene County from the inception of the tobacco program to present-day regarding cultural norms and economic impact, while simultaneously providing…

Read More

Evaluating Public Perceptions of Agricultural Water Use by Regions to Guide Extension Programming

2018 Outstanding Article
Alexa J. Lamm, Peyton N. Beattie, & Melissa R. Taylor
Agricultural water use accounts for a large portion of water withdrawal in the United States (U.S.). The agricultural industry has recently come under public scrutiny as increased droughts across the nation has led to competition for water. The added pressure has led to an increase in policy aimed at curbing agricultural water use in many parts of the U.S. At the same time, public perception of agricultural water use was at an all-time low with little recognition that agricultural water needs differ depending upon geographic location. The purpose of this study was to evaluate public perceptions of water use across the nation to assist extension educators in the development of programs focused on educating about diverse agricultural water needs. The findings revealed respondents generally trust farmers when it comes to water use and believe farming practices have a positive effect on the natural environment…

Read More

4-H Wildlife Habitat Education Program: A Qualitative Study in Career Exploration

Ronnie L. Cowan, Carrie A. Stephens, Christopher Stripling, Craig Harper, Baylee Jarrell, & Shelby Brawner
Previous studies have documented the Wildlife Habitat Education Program (WHEP) builds life skills of 4-H participants. Furthermore, youth education and development of life skills are enhanced through 4-H educational efforts that provide hands-on learning projects and concepts that ultimately assist in career development (Bandura,Barbaranelli, Caprara, & Pastorelli, 2001; Bourdeau, 2004. The purpose of this study is to describe WHEP participants’ perceptions of careers in wildlife management after the completion of the annual program. The centralresearch question guiding this study was how do 4-H members view careers in wildlife management after participating in WHEP? A focus group comprised of nine WHEP participants was conducted at the Tennessee 4-H Wildlife Judging contest to determine participants’ perceptions of careers in wildlife management after completion of the annual program…

Read More

Impact of a Poultry and Egg Food Safety Education on 4-H Youth

M. Beaty, J.C. Ricketts, & S. Godwin
This study sought to evaluate a poultry and egg food safety education intervention for 4-H youth. Materials developed and shared with students were infused with key content stemming from microbiological research findings associated with this project and a content analysis of other key findings in the field that consumers ought to know and apply to reduce instances of food-borne illness and death. With financial support from the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) Agriculture and Food Research Initiative (AFRI), the Poultry and Egg Education Project (PEEP) accomplishes this goal for families and communities by evaluating knowledge, attitudes, perceptions and intentions of implementing lessons learned during a workshop on poultry and egg food safety. Among a convenience sample of 4th-6th grade 4-H youth attending various 4-H camps (n = 190), post-test knowledge scores were significantly higher than pre-test scores…

Read More