All Posts By

Jacob Englin

Investigating Science Efficacy Before and After a Professional Development Program focused on Genetics, Muscle Biology, Microbiology, and Nutrition

Jesse Bower, Fresno State, jessebower@csufresno.edu

Bryan A.  Reiling, University of Nebraska-Lincoln, breiling2@unl.edu

Nathan W. Conner, University of Nebraska-Lincoln, nconner2@unl.edu

Christopher T. Stripling, University of Tennessee, cstripli@utk.edu

Matthew S. Kreifels, University of Nebraska-Lincoln, matt.kreifels@unl.edu

Mark A. Balschweid, University of Nebraska-Lincoln, mbalschweid2@unl.edu

PDF Available

Abstract

This study investigated teachers’ levels of Personal Science Teaching Efficacy (PSTE) and Science Teaching Outcome Expectancy (STOE) using the Science Teaching Efficacy Beliefs Instrument (STEBI). The population included 10 teachers completing an Increasing Scientific Literacy through Inquiry-Based Professional Development in Genetics, Muscle Biology, Microbiology, and Nutrition. Assessments were made at two points. First, the participants were assessed by using a pretest followed up by a posttest 12 months later after implementing the new curriculum. The teachers experienced gains during the professional development on both their personal science teaching efficacy and their science teaching outcome expectancy. However, the mean differences were not statistically significant. Results of this study indicate that the Increasing Scientific Literacy through Inquiry-Based Professional Development may be used as a tool to increase PSTE and STOE in agricultural educators and science teachers.

Introduction/Theoretical Framework

In the 2020-2021 school year, the Nebraska student-centered assessment in the area of science indicates that only 50% of high school students meet the science expectation (Nebraska Department of Education, 2022). The lack of science proficiency is not surprising given the statistics from 2017 indicating students’ proficiency gradually decreases between 5th grade, 8th grade, and 11th grade (Nebraska Department of Education, 2017). In 2017, 28% of 5th graders were below proficient, 32% of 8th graders were below proficient, and 39% of 11th graders were below proficient (Nebraska Department of Education, 2017). Proficiency scores indicate that science efficacy needs to be addressed at all grade levels, but specifically at the high school level. Based on research and theory, it is determined that outcome expectancy (OE) and science efficacy (SE) are complementary factors in determining the success of teachers in a science-based classroom. (Stripling & Roberts, 2013)

Teacher self-efficacy relates to progressive teaching behaviors and positive student outcomes. Therefore, the social cognitive theory serves as the theoretical framework for this study. The social cognitive theory identifies the capabilities of humans, and their purposeful intentions, that can and will affect their course of action (Bandura, 1977, 1997). This process is called triadic reciprocal causation and was developed by Albert Bandura (1977, 1997). Triadic reciprocal causation suggests three interrelated factors that mutually impact people: environmental, behavioral, and personal factors (Bandura, 1977, 1997). These three factors determine what a person believes about themselves and aide in their decision-making process (Bandura, 1977, 1997). Triadic reciprocal causation advocates that no one single factor determines a person’s behavior, instead, it is the combination of all three factors (Bandura, 1977, 1997). When determining OE and SE, behavior could be predicted (Bandura, 1997) and efficacy beliefs help dictate motivation (Maehr & Pintrich, 1997; Pintrich & Schunk, 1996). Self-efficacy theory helps outline what motivates a person (Graham & Weiner, 1996), and so, the theory can be applied to any behavioral task and predict what will take place.

In the teacher efficacy belief literature, two dimensions of teacher self-efficacy, including Teaching Efficacy (Outcome Expectancy) and Personal Teaching Efficacy (Self- Efficacy), have been defined and utilized in subsequent studies. Several studies suggest that teacher efficacy beliefs may account for individual differences in teacher effectiveness (Armor et al., 1976; Berman & McLaughlin, 1977; Brookover et al., 1978; Brophy & Evertson, 1981). Student achievement has also been shown to be significantly related to teacher efficacy beliefs (Ashton & Webb, 1983). The measurement of Personal Teaching Efficacy has been used to predict teacher behavior with accuracy (Ashton et al., 1983).

Teachers’ content knowledge affects student learning (Ballou & Podgursky, 1999; Ma, 1999; Podgursky, 2005); therefore, science teachers are expected to be highly qualified in the subject area in which they teach. Not only do teachers need to have a high level of comprehension in the content area, but they also need to display passion and enthusiasm. Additionally, standardized tests, only prove that students can memorize and focus on the content because the performance goals measured only address low levels of learning (Meece et al., 2006).

Teacher self-efficacy has also been connected to beginner agriculture teachers’ pledge to the teaching career (Knobloch & Whittington, 2003). Teaching efficacy is a more specific type of self-efficacy (Stripling & Roberts, 2013; Stripling et al., 2008), and is a teacher’s belief in their competence to facilitate the learning environment and produce desired learning results (Guskey & Passaro, 1994; Soodak & Podell, 1996). Beginning teachers who are more efficacious tend to have a greater obligation to teaching than those who are not as efficacious and consequently are more motivated to remain in the teaching profession (Whittington et al., 2003). In fact, beginner teachers could have an exaggerated sense of self-efficacy because of their student teaching experience (Knobloch, 2006).

This professional development program utilized inquiry-based learning as the main instructional approach. There have been numerous studies that show inquiry-based learning is an effective method for teaching science (Keys & Bryan, 2001). Inquiry-based learning requires students to manage their own learning and their success will be based on their engagement in the lesson through active listening and problem solving. Inquiry-based learning opportunities provide the foundation for students to make observations, pose questions, compare evidence, predict outcomes, and communicate research results (National Research Council, 2000).

Purpose/Objectives

The purpose of this study was to determine the teachers’ level of science efficacy in the agricultural education and science classrooms and compare the results as the teachers progressed through the yearlong professional development. The modified science teaching efficacy scale (based on Enochs & Riggs, 1990) consists of both personal science teaching efficacy (PSTE) and science teaching outcome expectancy (STOE).

Objectives include:

  1. Investigate secondary life science teachers’ personal science teaching efficacy (PSTE) within the sciences before and after the Increasing Scientific Literacy through Inquiry-Based Professional Development in Genetics, Muscle Biology, Microbiology, and Nutrition.
  • Investigate secondary life science teachers’ science teaching outcome expectancy (STOE) before and after the Increasing Scientific Literacy through Inquiry-Based Professional Development in Genetics, Muscle Biology, Microbiology, and Nutrition.

Two null hypotheses were used to guide this inquiry:

H01: There is no significant difference in the personal science teaching efficacy (PSTE) of life science teachers before and after the Increasing Scientific Literacy through Inquiry-Based

Professional Development in Genetics, Muscle Biology, Microbiology, and Nutrition treatment.

H02: There is no significant difference in the science teaching outcome expectancy (STOE) of life science teachers before and after the Increasing Scientific Literacy through Inquiry-Based

Professional Development in Genetics, Muscle Biology, Microbiology, and Nutrition treatment.

Methods/Procedures

Professional Development

This professional development (PD) program provided an opportunity for high school agricultural education teachers and science teachers to participate in a 12-month long PD. Applicants were encouraged to join the program with both a science and agriculture teacher from their school. The purpose of this was to bridge the gap between agriculture and science disciplines. After applications were submitted, there were not enough paring entries from all the same schools, so science and agriculture teachers were coupled from different schools (N = 10). For this study, the participants will be referred to as life science teachers. Applicants were recruited in the Spring of 2017. The project was divided into three phases.

Phase I

The PD program began in summer 2017 with a one-day workshop that took place at three different locations throughout Nebraska. The workshop introduced information centered around how students learn, more specifically, experiential learning, short-term and long-term memory, Bloom’s taxonomy, and learning styles. From there, the inquiry-based learning teaching method was introduced. All learning activities that were developed and used in this PD incorporated inquiry-based learning and allowed teachers to experience learning activities as students.

Basic scientific disciplines including biology, chemistry, and mathematics are interrelated in the growth and development of living beings.  For this reason, scientific units of study that focused on the Scientific Principles of Food Animal Systems were developed. The following units were included:

  1. Genetics
  2. Growth & Development / Chemistry of Muscle Biology

3)   Microbiology of Food Safety

4)   Physiology and Chemistry of Nutrition

Each unit provided basic content knowledge, hands-on inquiry-based learning activities, and student reflection instruments.  Content knowledge included educational videos and PowerPoint slides that could be used to introduce high school students to the topic and provided the scientific basis of the topic and related activities. Instructional materials also included a listing of necessary supplies and equipment, ordering information, and easy-to-follow instructions.  For those secondary life science educators that participated in the PD, selected supplies that would not normally be present in a typical high school science laboratory were provided to facilitate the small-group student learning activities. 

Finally, through inquiry-based learning, it is imperative that high school students be asked to reflect upon what they’ve just learned; to evaluate the results and to project how those results might relate to new situations or scenarios (Kolb, 1984).  To facilitate this final component of inquiry-based learning, instruments were developed to encourage high school students to reflect upon what they just learned and how that new knowledge may be applied to different situations in the future. Scientific principles related to genetics, muscle biology, microbiology, and nutrition were used to demonstrate a hands-on, inquiry-based learning pedagogy. 

Phase II

The program continued throughout the 2017-2018 academic year. Conference calls through Zoom, a video conferencing platform, took place in August and December of 2017, and April of 2018. The calls were used to discuss how life science teachers were implementing the prescribed learning activities that focused on genetics, muscle biology, microbiology, and nutrition.

Phase III

Life science teachers were placed in small teams and asked to develop additional inquiry-based learning activities that were presented during the final PD session in June of 2018. Each team was assigned a specific unit (genetics, muscle biology, microbiology, or nutrition) to focus their efforts.  The overall purpose of this activity was to help life science teachers learn how to develop their own inquiry-based learning activities and share their activities with a broader audience.

Data Collection

Quantitative methods were used to determine the change in teachers’ science teaching efficacy by using a modified science teaching efficacy scale (based on Enochs & Riggs, 1990). The instrument used for data collection was created by Enochs and Riggs (1990) to measure the self-efficacy of science teachers, called the Science Teaching Efficacy Belief Instrument (STEBI). Additionally, the data collected for this study was part of a larger data set.

The STEBI consisted of 23 questions scaled from 1 (strongly disagree) to 5 (strongly agree). Terminology was adjusted by researchers to accommodate for high school teachers instead of preservice elementary science teachers. Example questions from Enochs and Riggs (1990) include “I will continually find better ways to teach science,” “The inadequacy of a student’s science background can be overcome by good teaching,” “The low science achievement of some students cannot generally be blamed on their teachers,” and “When a low achieving child progresses in science, it is usually due to extra attention given by the teacher.”

The STEBI (Enochs & Riggs, 1990) is comprised of two scales that measure the constructs personal science teaching efficacy (PSTE) and science teaching outcome expectancy (STOE).

All items use a 5-point rating scale (1 = strongly disagree to 5 = strongly agree). The following item was modified from Enochs and Riggs (1990) by removing the word elementary: “I understand science concepts well enough to be effective in teaching elementary science.”

Additionally, Enochs & Riggs (1990) stated reliability analysis produced Cronbach’s alpha coefficients of .90 for PSTE and .76 for STOE. Post-hoc reliabilities for PSTE and STOE were .799 and .732, respectively. These measures of internal-consistency are acceptable given the nature of the constructs and present reliabilities on comparable measures (Ary et al., 2014).

Data Analysis

Data were analyzed using IBM SPSS version 20. Descriptive statistics (i.e., frequencies, percentages, and means) were used to describe the science teaching efficacy data. Additionally, based on Haynes and Stripling (2014) and Dossett et al. (2019), low, moderate, and high self-efficacy was defined as 1.00 to 2.33, 2.34 to 3.67, and 3.68 to 5, respectively. Data was summarized using descriptive statistics (i.e., frequencies, percentages, and means). Paired samples t-tests were utilized to determine if a significant difference existed in science teaching efficacy and outcome expectancy (OE).

The STEBI contains 23 items in the survey and 13 are designed to address science teachers’ level of belief that they can teach science (Personal Science Teaching Efficacy or PSTE) and 10 assess the respondents’ belief that their teaching will have a positive effect on the students they are teaching (Science Teaching Outcome Expectancy or STOE). Paired t-tests were run on the pre and post survey scores for the PD. The PSTE and STOE section, scores were analyzed separately. Therefore, all analyses of group mean differences were done as two tailed tests.

Results/Findings

The first and second objectives were to investigate the level of PSTE/STOE of the professional development participants before and after the PD. During the first phase of the study teachers reported before the PD, they had a mean personal science teaching efficacy (PSTE) score of 3.83 (SD = .27) and an outcome expectancy (OE) of 3.35 (SD = 0.48). The second phase conducted after the 12-month PD teachers reported an increase in both areas with a mean PSTE of 3.95 (SD = 0.33) and an OE of 3.47 (SD = 0.47).

Means and analysis results for the surveys are presented in Table 1 and Table 2. Analysis of surveys from the PD indicated no significant pre/post shifts on PSTE or STOE scores, however there were small actual mean differences.

Table 1

Personal Science Teaching Efficacy Scores 

LowModerateHigh
MSDf%f%f%
Pretest3.830.2700.0330.0770.0
Posttest3.950.4800.0110.0990.0
Note. 1.00 to 2.33 = low efficacy, 2.34 to 3.67 = moderate efficacy, 3.68 to 5 = high efficacy.

Table 2

Science Teaching Outcome Expectancy Scores 

  LowModerateHigh
 MSDf%f%f%
Pretest3.350.4800.0660.0440.0
Posttest3.480.4700.0660.0440.0
Note. 1.00 to 2.33 = low efficacy, 2.34 to 3.67 = moderate efficacy, 3.68 to 5 = high efficacy.

The mean differences between the pre and post teaching efficacy scores for PSTE and STOE are in Table 3. Analysis revealed a .11-point increase in PSTE, a .13-point increase in the STOE. However, the mean differences were not statistically significant. Thus, the null hypotheses were not rejected.

Table 3

Summary of Paired Samples t tests

 Mean differenceSDSEtp
PSTE posttest – pretest.11.20.061.79.11
STOE posttest – pretest.13.51.16.79.45

Conclusions/Recommendations/
Implications

The purpose of administering the modified STEBI (based on Enochs & Riggs, 1990) was to investigate teachers’ level of science efficacy in the agricultural education and science classrooms and compare the results as the teachers progressed through the professional development.Personal science teaching efficacy (PSTE) slightly increased from pre and posttest and science teacher outcome expectancy (STOE) also changed during the PD.

Analysis revealed a .11-point increase in PSTE, and a .13-point increase in STOE. However, the mean differences were not statistically significant. Thus, the null hypotheses were not rejected. Results of this study indicate that the Increasing Scientific Literacy through Inquiry-Based Professional Development program may be used as a tool to increase PSTE and STOE in life science teachers. Professional development opportunities focused on teaching science through inquiry-based learning could be a way to increase science efficacy (SE) and outcome expectancy (OE) over time. If professional development workshops could continually increase SE and OE, the SE and OE could be used to help determine teacher success in a science-based classroom, thus aligning with Stripling and Roberts’ (2013) assertion that OE and SE can be used to determine teacher success. Teacher educators should purposefully design teacher professional development programs to allow teachers to practice their science teaching skills, thus providing an opportunity for the teacher to increase their SE and OE. To align with Kolb (1984), the professional development should be designed to have purposeful reflection activities that allows the teachers to critically examine their ability and confidence when teaching science concepts.

We found life science teachers in this study to be moderately efficacious in their ability to teach science concepts before and after the conclusion of the PD. However, 20% of the life science teachers in this study moved from moderate to high efficacy with PSTE. According to Bandura (1997), self-efficacy influences behavior. Thus, theoretically, being highly efficacious in PSTE should positively impact the teaching of contextualized science in school-based agricultural education and science programs; on the other hand, being moderately efficacious may negatively impact the teaching of contextualized science. Additionally, educating life science teachers in technical science content aligns with Ballou and Podgursky, 1999, Ma, 1999, and Podgursky, 2005 assertion that teachers content knowledge impacts student learning. Therefore, we recommend the continuation of professional development programming that aims to increase technical content knowledge. Providing in-depth technical content knowledge should allow the teachers to increase their confidence because they will have a better understanding of the technical content and will feel more comfortable teaching the technical content in the classroom. It is important to note that the small sample size limits the generalizability of the findings.

Future research should be conducted to determine why approximately an equal number of teachers are moderately or highly efficacious in PSTE and determine if moderate self-efficacy negatively impacts the teaching of contextualized science. In regard to science teaching outcome expectancy, a majority of the life science teachers were moderately efficacious in STOE. Theoretically, being moderately efficacious in STOE may negatively impact the teaching of contextualized science. The said research will also aid the planning of professional development for agricultural education and science teachers and can be used to guide experiences offered in agricultural and science teacher education programs.

References

Armor, D., Conroy-Osequera, P., Cox, M., King, N., McDonnel, L., Pascal, A., Pauley, E., & Zellman, G. (1976). Analysis of the school Preferred readiness programs in selected Los Angeles minority schools (R-2007-LAUSD). Rand Corp.

Ary, D., Jacobs, L. C., Sorensen, C. K., & Walker, D. A. (2014). Introduction to research in education (9th ed.). Wadsworth.

Ashton, P., Webb, R., & Doda, C. (1983). A study of teachers’ sense of efficacy (Final Report, Executive Summary). Gainesville: University of Florida.

Ballou, D., & Podgursky, M. (1998). The case against teacher certification. The Public Interest.

Bandura, A. (1977). Social learning theory. Prentice Hall.

Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman.

Berman, P. & McLaughlin, M. (1977). Federal Programs supporting educational change: Vol. 7. Factors affecting implementation and continuation (R-1589/7-HEW). Rand Corporation.

Brookover, V. B., Schweitzer, J. J., Schneider, J. M., Beady, C. H., Flood, P. K., & Wisenbaker, J. M. (1978). Elementary school social climate and school achievement. American Educational Research Journal, 15(2), 301-318.

Brophy, J. & Evertson, C. (1981). Student characteristics and teaching. Longman.

Dossett, J., Stripling, C. T., Haynes, C., Stephens, C. A., & Boyer, C (2019). Mathematics efficacy and professional development needs of Tennessee agricultural education teachers. Journal of Agricultural Education, 60(4), 255-271. https://doi.org/10.5032/jae.2019.04255

Enochs, L. G., & Riggs, I. M. (1990, April 8–18). Further development of an elementary science teaching efficacy belief instrument: A preservice elementary scale. [Paper presentation].

National Association for Research in Science Teaching, Atlanta, GA, united States.

Graham, S., & Weiner, B. (1996). Theories and principles of motivation. Berliner.

Gusky, T. R., & Passaro, P.D. (1994). Teacher efficacy: A study of construct dimensions. American Educational Research Journal,31, 627-643.

Keys, C. W., & Bryan, L. A. (2001). Co-constructing inquiry-based science with teachers: Essential research for lasting reform. Journal of research in science teaching, 38(6), 631- 645. https://doi.org/10.1002/tea.1023

Knobloch, N. A. (2006). Exploring relationships of teachers’ sense of efficacy in two student teaching programs [Electronic Version]. Journal of Agricultural Education, 47(2), 36-47. https://doi.org/10.5032/jae.2006.02036

Knobloch, N. A., & Whittington, M. S. (2003). Differences in teacher efficacy related to career commitment of novice agriculture teachers. Journal of Career and Technical Education, 20(1), 87-98. https://doi.org/10.21061/jcte.v20i1.625

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Prentice Hall. 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Lawrence Erlbaum Associates.

Maehr, M., & Pintrich, P. R. (1997). Advances in motivation and achievement (Vol. 10). JAI Press.

Meece, J. L., Anderman, E. M., & Anderman, L. H. (2006). Classroom goal, structure, student motivation, and academic achievement. Annual Review of Psychology, 57, 487-503. http://doi.org/10.1146/annurev.psych.56.091103.070258.

National Research Council. (2000). Inquiry and the national science education standards: A guide of teaching and learning. National Academy Press.

Nebraska Department of Education. (2022). Launch Nebraska- Science. https://www.launchne.com/20-21/covid-19-special-report/.

Nebraska Department of Education. (2017). Nebraska State Accountability (NeSA)- Science. http://nep.education.ne.gov/State?DataYears=20162017.

Podgursky, M. (2005). Teaching licensing in U.S. pubic schools: The case for age simplicity and flexibility. Peabody Journal of Education, 80, 15-43.

Stripling, C. T., & Roberts, T. G. (2013). Investigating the Effects of a Math-Enhanced Agricultural Teaching Methods Course, Journal of Agricultural Education, 54(1), 124–138. https://doi.org/10.5032/jae.2013.01124

Soodak, L. C., & Podell, D. (1996). Teacher efficacy: toward the understanding of a multi-faceted con- struct. Teaching and Teacher Education, 12(4), 401-411.

Pintrich, P. R., & Schunk, D. H. (1996). Motivation in education: Theory, research, and applications. Merrill/Prentice Hall.

Haynes, J. C., & Stripling, C. T. (2014). Mathematics Efficacy and Professional Development Needs of Wyoming Agricultural Education Teachers. Journal of Agricultural Education55(5), 48-64. http://doi:10.5032/jae.2014.05048

Stripling, C., Ricketts, J. C., Roberts, T. G., & Harlin, J. F. (2008). Preservice agricultural education teachers’ sense of teaching self-efficacy. Journal of Agricultural Education, 49(4), 120-130. http://doi:10.5032/jae.2008.04120

Whittington, M. S., McConnell, E. A., & Knobloch, N. A. (2003). Teacher efficacy of novice teachers in agricultural education at the end of the school year. Proceedings of the 30th Annual National Agricultural Education Research Conference, Orlando, FL, 204-215.

Implications of Pandemic Responses for Extension Education and Outreach

Samuel Quinney, Clemson Extension, squinne@clemson.edu
Grace Greene, Clemson University, mgg2@g.clemson.edu
Christopher J. Eck, Oklahoma State University, chris.eck@okstate.edu
K. Dale Layfield, Clemson University, dlayfie@clemson.edu
Thomas Dobbins, Clemson University, tdbnns@clemson.edu

PDF Available

Abstract

As part of daily tasks of Cooperative Extension, agents handle public issues by offering programming by approved methods to inform the public. Within the context of this study, a mixed-methods approach was established to determine the factors impacting behaviors associated with Clemson Extension, programming efforts, and roles during the COVID-19 pandemic. Understanding the attitudes and perceptions of Extension educators and key stakeholders (i.e., advisory committee members), researchers, faculty, and Extension educators can be better prepared to face future challenging while continuing to meet the public demand. This exploratory, mixed methods inquiry investigated the perceptions of current Clemson Extension agents across South Carolina and Extension advisory committee members related to the ongoing COVID-19 pandemic and Extensions response. To meet the needs of this mixed methods approach, qualitative interviews were conducted with Extension agents and a survey questionnaire was utilized to collect pertinent data from Extension advisory committee members. Through this study, strengths and challenges for South Carolina Cooperative Extension Agents during the COVID-19 pandemic were learned, providing a framework in the event of similar challenges in the future. Adaptability is key moving forward for Extension, as it allows Extension agents to meet the needs in their communities, serve their primary stakeholder groups, and improve overall perceptions of what they offer. Extension professionals should consider the findings as a starting point to evaluate the current state of Extension programming and how to best move forward to address pertinent agricultural issues.

Introduction/Theoretical Framework

“The pace of innovation in the agriculture-related, health, and human sciences demands that knowledge rapidly reaches the people who depend on it for their livelihoods” (USDA-NIFA, 2021, para. 1). Specifically, the Clemson Cooperative Extension (2021) service aims to “improve the quality of life of all South Carolinians by providing unbiased, research-based information through an array of public outreach programs in youth development; agribusiness; agriculture; food, nutrition and health; and natural resources” (para. 1). The normal day to day operations of Clemson Extension was brought to a halt on March 18th, 2020, after the World Health Organization (2020) declared the Novel Coronavirus or COVID-19, a global pandemic on March 11, 2020.

As part of daily tasks of Cooperative Extension, agents handle public issues by offering programming by approved methods to inform the public (Dale & Hahn, 1994; Patton & Blaine, 2001). Most issues originate as private concerns and become public when outside agencies become involved and widespread support or opposition is gained. This is often related to an identifiable problem, whereas others may arise from misinformation or inaccurate perceptions (Patton & Blaine, 2001). These contentious issues often create situations in which public input and education can be keys to solving the problem; however, due to the highly charged nature of such issues, many leaders tend to avoid them (Jolley, 2007; Patton & Blaine, 2001; Rittel & Webber, 1973). Clemson extension has always made it a priority to provide relevant programming to address these public issues.

During today’s societal changes of the COVID 19 Pandemic, agricultural communities have faced challenges. According to the United States Department of Agriculture (USDA) Economic Research Service (ERS) (2021), the total number of cash receipts by commodity has remained steady, with some commodities increasing between the years 2020 and 2021. Animals and animal products increased just under $8.6 billion, and crops increased just over $11.8 billion via cash receipts reported by the USDA-ERS (2021). Some of these increases in consumer purchases have come through governmental policies, which increased American agriculture commodity purchases from foreign countries under the US and China trade deal. China will purchase and import $40 billion dollars’ worth of American agriculture products including meat goods (McCarthy, 2020), others came from a decrease in store availability, though no nationwide shortages have been reported (USDA, 2021). Though the total cash receipts have improved nationally, local agriculture producers face a distinct set of issues. Such issues include a misinformed public, slaughterhouse backups, and a lack of land availability. However, the agricultural cash receipts have yet to be reported for South Carolina according to the USDA-ERS (2021).

Clemson Extension was not alone, as schools, businesses and government agencies across the U.S. adapted to limit in-person contact (CDC, 2020). Extension agents had to cancel some scheduled programming and events and shift what they could to virtual platforms, such as Zoom, which has been identified as easy-to-use and engaging (Robinson & Poling, 2017). With the pandemic catching most off-guard, little account was taken into the perceptions, attitudes, and beliefs of Clemson Extension agents and advisory groups. To frame the evaluation of these concerns, the theory of planned behavior (Ajzen, 1991) was implemented (see Figure 1).

Figure 1

Ajzen’s (1991) Theory of Planned Behavior Model

The theory of planned behavior (Ajzen, 1991) “provides a useful conceptual framework for dealing with the complexities of human social behavior” (p. 206), as it provides a frame to outline the predictability of an individual’s future plans and behaviors (Ajzen, 1991). The theory of planned behavior has further been implemented (Murphrey et al., 2016) to evaluate one’s perceptions and/or intentions related to formal and informal training (i.e., Extension programming). Within the context of this study, a mixed-methods approach was established to determine the factors (i.e., attitude toward the behavior, subjective norms, and perceived behavioral control) impacting behaviors associated with Clemson Extension. Specifically, programming efforts (i.e., attitudes), roles (i.e., norms), issues (i.e., attitude and perceived control), and solutions (i.e., intentions) were addressed to establish best practices learned from the COVID-19 pandemic. Understanding the attitudes and perceptions of Extension educators and key stakeholders (i.e., advisory committee members) allows researchers, faculty, and Extension educators to be better prepared to face future challenges while continuing to meet the current public demand.

Purpose and Research Objectives

During today’s societal changes, Clemson Extension has expanded its role to provide education to the public through virtual and other non-contact options. Therefore, this study aimed to determine the perceptions of Clemson Extension agents and the prevalent issues faced within the agriculture community in the South Carolina by interviewing Extension agents and surveying Clemson Extension advisory committee members. Four research questions were developed to guide this study:

  1. Describe the current perceptions of Clemson Extension agents amidst the COVID-19 pandemic.
  2. Identify the greatest issues facing agriculture in South Carolina according to advisory committee members during the COVID-19 pandemic?
  3. Determine current and potential solutions from Clemson Extension to address the issues faced during the COVID-19 pandemic.
  4. Create a list of preferred programs and program delivery methods for future Extension programming.

Methods

This exploratory, mixed methods inquiry investigated the perceptions of current Clemson Extension agents across South Carolina (N = 154) and Extension advisory committee members (N = 64) related to the COVID-19 pandemic and Extensions response. To meet the needs of this mixed methods approach, qualitative interviews were conducted with Extension agents (n = 6) and a survey questionnaire was utilized to collect pertinent data from Extension advisory committee members.

Qualitative Inquiry Procedures

As with most qualitative inquiries, this study sought to provide rich information from the Extension agents as they adapt with the changing dynamics of the pandemic. A purposive sampling strategy was implemented to reach data saturation amongst the variety of agents across the state. This sampling method included soliciting participation from agents from all five regions and 10 program teams, resulting in interviews with six agents representing five program teams and all five regions spanning 15 counties, as some agents work in multiple counties. For proper tracking of data, each participating agent was provided a pseudo name that is outlined in Table 1.

Table 1

Clemson Extension Agents Who Participated in the Study (n = 6)

Pseudo Name Sex Region Program Team 
Shawn Male Region 4 Horticulture 
Abigail Female Region 1 4-H Youth Development 
Violet Female Region 5 Livestock & Forages 
Leonard Male Region 3 Forestry & Wildlife 
Keith Male Region 4 Agronomic Crops 
Taylor Male Region 2 Horticulture 

To address the overarching research objective of the qualitative inquiry, a flexible interview protocol was established spanning four topic areas, including: 1) Accessibility and program impacts; 2) Responding in a time of crisis; 3) Remote instruction and distance education; and 4) Economic and communication concerns early in the COVID-19 pandemic. Each topic area included probing questions to help facilitate conversation, helping to uncover the specific paradigm being studied. Glesne (2016) identifies the specific paradigm or reality being evaluated within this study as an ontology, as the study aimed to discover and individuals’ beliefs associated with their current reality, further connecting to the theory base (Ajzen, 1991) as we try to uncover future intentions. The interview protocol was checked for face and content validity (Salkind, 2012) by two faculty members with teaching and research experience in Extension education and research methodology. All six interviews were conducted by an undergraduate student minoring in Extension education following the interview protocol for consistency. Additionally, a fieldwork notebook was compiled by the interviewer to document the interview experiences through observation notes, interview notes, and reflexive thoughts (Glesne, 2016).

The interviews were conducted using Zoom due to the ongoing COVID-19 pandemic and University regulations. The interviews were recorded and transcribed using features embedded in the Zoom platform, which were then compared against one another for accuracy. In addition to the interview recordings and transcriptions, interviewer notes were used for triangulation of data. To further increase the trustworthiness of the study, the research team followed the recommendations of Privitera (2017) to establish credibility, transferability, dependability, and confirmability within the study. Creditability was addressed through coding member checks across the research team to reduce bias (Creswell & Poth, 2018) along with triangulation of data and saturation of emerging categories (Privitera, 2020). To enhance transferability the researchers described the participants (including pseudonyms), detailed the interview and data analysis process, and highlighted the perspectives of the participants. Procedural explanations and data triangulation furthered the dependability of the research (Creswell & Poth, 2018; Privitera, 2020), and a reflexivity statement was included to describe any inherent biases associated with then phenomenon (Privitera, 2020).

Confirmability refers to the objectivity of the findings and the ability to interpret the narrative of the experience of participants to determine the essence of the phenomena instead of the researcher’s bias (Creswell & Poth, 2018; Privitera, 2020). A reflexivity statement describes the researchers previous understanding of the phenom

To analyze the interview transcripts through a qualitative lens, this study implemented the constant comparative method (Glasser & Strauss, 1967), which permits the data to speak for itself, allowing themes to emerge. The first round of coding used open-coding sources, allowing themes to emerge through the process (Creswell & Poth, 2018). Axial coding was followed for second-round coding, where the relationships between open codes resulted in overarching categories (Creswell & Poth, 2018; Glasser & Strauss, 1967). Round three of coding was selective coding, where the researchers determined the core variables from the qualitative interviews.

The purposive sampling provides a limiting factor as only six Clemson Extension agents were interviewed for the purpose of this study. Therefore, the findings of this study are limited to the views of the participants and not necessarily that of all agents in the state, but the findings of the study can be used to inform practice, guide future research, and potentially offer state-wide implementations based on needs. The research team recommends caution when looking to generalize the data, although the data has transferable qualities if the readers deem the population and situations identified as germane to their inquiry.

Within a qualitative inquiry, Palaganas et al. (2017) recommends for researchers to acknowledge any inherent bias and reveal their identify to offer reflexivity. The research team consisted of two faculty members in agricultural education at Clemson, a current Extension educator, and an undergraduate student pursuing a minor in extension education. The faculty members have more than 30 years of experience combined in agricultural and extension education. We recognize our bias toward Extension because of our faculty roles and have attempted to harness that bias through a consistent interview protocol, interviewer, and extensive field notes.

Survey Research Procedures

This non-experimental descriptive survey research component aimed to reach Clemson Extension advisory committee members (N = 64) in Abbeville, Anderson, Greenville, Oconee, and Pickens counties in South Carolina. The counties selected to participate in the survey were selected for their vast differences, including suburban, rural agriculture/homesteads, small towns, and large cities. The populations of the participating counties were Greenville – 507,003; Anderson – 198,064; Pickens – 124,029; Oconee – 77,528, and Abbeville – 24,627 (United States Census Bureau, 2021).

The questions addressed in this study were designed to assess how the Clemson Cooperative Extension Service adapted during the COVID 19 pandemic. Survey questions were divided into three categories, 1) Agricultural issues, 2) Extension programming, and 3) Participant demographics. The agricultural issues category elicited open ended responses to determine the greatest issues facing agriculture and what Clemson Extension is and can do to help the issues. The second category aimed to determine the preferred program delivery methods and primary program teams of interest. The researcher-developed survey was reviewed for face and content validity by Agricultural Education faculty and Clemson Extension professionals.

Of the 64 advisory members who received the survey via email, 27 responded, resulting in a 42.2% response rate. Participants were 55.6% male and 44.4% female and ranged in age from 29 to 73 years old, with agricultural involvement varying from pre-production/production agriculture to agricultural consumers (see Table 2) across the five counties. Data was analyzed using SPSS Version 27 to address the proposed research questions.

Table 2

Personal and Professional Demographics of Extension Advisory Committee Members in South Carolina (n = 27).

Demographics   f %
Gender Male 15 55.6
  Female 12 44.4
  Prefer not to respond 0 0.0
Age 21 to 30 1 3.7
  31 to 40 5 18.5
  41 to 50 3 11.1
  51 to 60 8 29.6
  61 to 70 4 14.8
  70 or older 6 22.2
  Did not respond 0 0.0
 Current Role in Agriculture Pre-Production  7.4 
Production1452.9
Consumer1037.03
 Did not respond 1 3.7

Findings

Research Question 1: Describe the current perceptions of Clemson Extension agents amidst the COVID-19 pandemic.

The emerging codes, themes, and categories were used to explain the perceptions of Clemson Extension agents related to the ongoing COVID-19 pandemic. Four overarching categories emerged from the findings.

Category 1: Extension is Adaptable

 Keith stated, “we’re used to getting things thrown in our lap, everybody in the world or everybody in the country says, you have any questions call your county extension agent,” which reinforced this concept. When considering the COVID-19 pandemic, Keith went on to say, “as far as agronomy agents and a lot of the horticulture agents, we’ve never quit visiting farmers, when they call, we go.” The changes caused by the pandemic looked different across the state, depending on the needs of community, which was encompassed through the thoughts of Extension professionals “adapting every single day and the pandemic just made it a big step, as opposed to little steps. We just had to figure out a way to continue to do what we’re already doing, just in a different format” (Leonard). Other interviews built upon these same lines of thought to demonstrate the overall adaptability of Clemson Extension.

Category 2: Need for Training and Resources

The greatest need indicated across the interviews was specific training and resources to help Extension professionals and constituents navigate the pandemic. Keith simply stated that “everybody’s been putting out fires and handling their own problems … and I think some help and some guidance with all our delivery programs would be great.” Abigail further identified “a big chunk of people who are probably [her] age and younger and then a couple of older ones who … are more traditional, who need some help.” The participants identified specific training needs for agents across the state related to Zoom, virtual programming, and mental health of both adults and youth, “because as the times change, new stuff comes up.” Additional resources were also discussed by participants as many Extension professionals “live out in the middle of nowhere and Internet does not come to [their] house” (Shawn), requiring them to work of a limited data hot spot, when the data is gone, they are without internet. Participants also expressed a need for computers “that can handle Zoom,” so they can utilize Zoom features and provide essential programming to constituents. The final resource need is for the community members Extension professionals aim to reach, as many farmers and ranchers struggle to engage using technology, which Leonard explained that “it’s not necessarily that they can’t do it, a lot of them just don’t have the ability. Your rural areas just don’t have computers.”

Category 3: Community Perceptions

Perceptions of the communities Extension professionals serve was expressed by Violet as, “we’ve been at this so long, I wonder about our relevance… I’m still making farm visits, but a lot of people think we’re closed.” Similarly, Taylor struggled “going from what we normally do and being the face of the public and the face of the university to everything [moving] online, was tough. The biggest struggle was getting over the hill of convincing yourself that this is the way it’s going to be and then having to convince clientele that this is the way it’s going to be for a little while.” The change in delivery was difficult for all involved and many are concerned with the impact of the pandemic on the relationship between the Extension professional and the clientele moving forward. Which, Violet expressed as her “greatest concern, is how to bring those people back and have them trust us again and know that we’re still working, we’re still here and we still deserve to be paid, that sort of thing. I’ve heard all those things so that’s probably what I’m worried about the most.”

Category 4: Reluctancy to New Methods

Violet explained that “certainly the Zoom capabilities are good, but there’s been some reluctance to use them from our older crowd, and, unfortunately most farmers are 65 and older.” She went on to express the hardships as “it’s been a little bit hard to pull them [older farmers] in and get them to really feel connected. They like our meetings for the information side of it, but also the community feel, and I think you do lose a little bit of that with the virtual sense or virtual realm.” In contrast, Taylor found a positive side to the new methods as “we’re reaching a lot more people, especially on our side of the team that probably wouldn’t normally come to a meeting because they can just jump on a computer now.” But he also went on to explain the reluctance as “a majority of our clientele is older, the Zoom thing is tough for them, the technology piece is tough… We picked up a lot of clients… but we probably have some frustrated clients because of it.”

Research Question 2: Identify the greatest issues facing agriculture in South Carolina according to advisory committee members during the COVID-19 pandemic?

The second research question focused on determining the greatest issue(s) currently facing the agricultural industry in South Carolina. Of the 27 respondents, two primary issues arose, the cost/lack of agricultural inputs and outputs, and the need for local produce and meat products. Table 3 outlines underlying issues that make up those broader categories.

Table 3

Greatest Issues Facing South Carolina Agriculture (n = 27)

CategorySpecific Issues
Cost/Lack of Agricultural Inputs and OutputsLand, Seed, Feed, Fertilizer, Chemicals; Slaughter Facilities
 Increased Cost due to Urban Sprawl; Market Fluctuations
Need for Local Produce and Meat productsCOVID Restrictions; Farmers Market and Open-Air Markets Closed

Research Question 3: Determine current and potential solutions from Clemson Extension to address the issues during the COVID-19 pandemic.

The third research question addressed the current and potential solutions Clemson Extension is currently providing or could provide to address issues in agriculture. Table 4 outlines the current solutions being offered, although 14.8% of respondents felt that nothing was currently available. The two current solutions include agricultural education and agricultural land loss prevention. Specifically, agricultural education represents the Making It Grow programming offered through South Carolina Educational Television (SCETV), information provided by the Home Garden Information Center (HGIC), 4-H youth development programming, and Extension programs/Education. The second solution to currently assist agriculturalists is the agricultural land loss prevention program focused on agricultural land easements offered through the USDA-NRCS office.

Table 4

Solutions Available for Current Agricultural Issues (n = 27)

Current SolutionsSpecific Program/Offering
Agricultural EducationMaking it Grow
 HGIC
 4-H Youth Programming
 Extension Programs/Education
Agricultural Land Loss PreventionAgricultural Land Easements-NRCS

In addition to current programs, respondents’ ideas for potential solutions were of interest to the research team. Respondents identified two categories of solutions, the first being to publicize Extension programs and services better, so the public have a better understanding of what Extension does and what is being offered. The second solution was an increase in agricultural education, specifically targeting small farms and farming for-profit programs, additionally youth education opportunities, along with specific education programming highlighting the historical importance of agricultural land and keeping that land in agricultural production. Much of this was connected to 56% of respondents identifying COVID-19 as having a specific impact on agriculture in the state. Specifically, one of the greatest concerns was the impact of virtual programming during the COVID-19 pandemic, as many individuals did not have access to virtual programming due to lack of technology or internet. A potential option that was presented was being sure to offer recorded (asynchronous) programming options versus the live (synchronous) options currently available.

Research Question 4: Create a list of preferred programs and program delivery methods for future Extension programming.

The final objective aimed to establish the preferred program delivery methods for future extension programming, along with current and future program interests. Table 6 outlines the preferred information delivery method of respondents.

Table 6

Preferred Information Delivery Method (n = 27)

Delivery Methodf%
Email933.3
Office Visits622.2
No Preference622.2
Farm Visits13.7
Phone13.7
Text Updates13.7
Fact Sheets13.7
Postal Mail13.7
Social Media13.7

In addition, 55.6% of participants said they would be willing to participate in future virtual programming if offered, while 22.2% of participants said they would not participate, and the remaining 22.2% were unsure. To further understand programmatic interests, participants were asked to identify which of the Clemson Extension Program teams had provided the most information during the pandemic, Table 7 outlines their responses.

Table 7

Programmatic Teams Offering the Most Programming During COVID 19

Program Teamf%
4-H725.9
Unknown622.2
Forestry and Wildlife414.8
Agricultural Education311.1
Horticulture311.1
Food Systems and Safety27.4
Livestock and Forages13.7
Rural Health and Nutrition13.7

Although 4-H was reported as the program team providing the most programming during the pandemic, participants expressed the most interest in more programming from the forestry and wildlife team (33.3%), followed by the agricultural education and livestock and forages teams, both with 26% of the respondents interested. The agribusiness team (22.2%) and the horticulture team (18.5%) rounded out the top five. The remaining program areas had less than 14% of participants interested.

Conclusions, Implications, and Recommendations

Through this study, strengths and challenges for South Carolina Cooperative Extension Agents during the COVID-19 pandemic were learned, providing a framework in the event of similar challenges in the future. As identified in the category one finding, “Extension is Adaptable,” discussed how agents continued to meet their constituent’s needs, but through use of many creative means. a benefit that will aide Cooperative Extension Agents is the ability to adapt quickly. This ability to adapt would support those aspects in the category two findings which identified a need for training/in-service of Cooperative Extension Agents and their constituents. Category three, “Community Perceptions,” is reflective of the anxiety and uncertainty that was commonly experienced during the pandemic. Shifts in time and locations of workplace during the pandemic created a variety of uninformed interpretations of staff labor and confusion among the clientele base. Category four, “Reluctancy to New Methods” was commonly thought to be a challenge, but during the pandemic, it became widely know that there are gaps in technological competencies. Altough Extension agents had negative perceptions about certain components of their ability to provide appropriate education and outreach to constituent groups, their overall intentions were positive leading to actionable behaviors (Ajzen, 1991) that made an impact in their communities and states.

According to the advisory committee members in this study, there are two primary issues (i.e., attitudes; Ajzen, 1991) facing agriculture (i.e., cost or lack of agricultural inputs and outputs and the need for local produce and meat products) in South Carolina. The first issue can be contributed to the availability of land due to urban sprawl as well as all input costs having significantly increased in spring 2021. Additionally, slaughter facilities have been waitlisted for the last year due to high demand for American meat products. The area of concern can be considered together with the first due to slaughterhouses being backed up, local meat producers are unable to get their product finished out and packed for sale. Open air markets and farmers have been under the mercy of local and federal government’s restrictions, which have limited or cancelled all opportunities for local produce to be made available (L. Keasler, personal communication, 2021). Although these issues are of concern, Extension has the opportunity to address some of them by providing timely and accurate information to those who need it most. This allows the agents to control what they can through communication, reducing the negative perception and informing stakeholders if the subjective norms (Ajzen, 1991) currently impacting agricultural production.

Extension can work with local producers to ensure that they are in contact with their local and state representatives to be made aware of the issues that American agriculturalists are facing in today’s environment. Extension can also provide more agricultural education to the general consumer to assist our agricultural producers in informing the community what issues they face to maintain their livelihood. Some things cannot be controlled, such as market fluctuations and processing facilities operation. However, agents can make public representatives aware of the issues, asking them to push these issues in front of our elected legislative bodies to enact change through governmental policies. According to Anderson and Salkehatchie counties Cattlemen’s Association members and meat producers (personal communication, January 12, 2021), the availability of funds to build more USDA certified handling facilities would increase the speed at which products can be made available to markets, as well as increase jobs in areas where these facilities are housed. Perhaps, inputs such as fertilizers and herbicides can be regulated by government to avoid price gouging when they are needed the most, making the big companies richer and the hard-working farmers pockets tighter to continue to make a living in production agriculture.

Local fruit and vegetable producers face a slightly different issue in that they are at the mercy of local, state, and federal mandates, only operating at full capacity when they are told it is safe to do so (L. Keasler, personal communication, 2021). Similarly, Extension is subject to these same mercies, although we have seemed to reach a new normal, the findings of this study can be beneficial for Clemson Extension and similar Extension agencies in other states.

The implications support the Theory of Planned Behavior (Ajzen, 1991), as agents recognized that they could adapt to meet the needs of their constituents during time of many unknowns and countless challenges demonstrates how favorable attitudes and intentions result in adaptable behaviors. These behaviors include the awareness of need for additional training and to seek resources to meet needs. Paradoxically, the resistance of many constituents to accept alternative programming methods presented opposing behaviors from the agents, creating additional challenges. Regardless, adaptability is key moving forward for Extension, as it allows Extension agents to meet the needs in their communities, serve their primary stakeholder groups, and improve overall perceptions of what they offer. Although it should be noted that many of the factors impacting Extension during the COVID-19 pandemic were outside of the Extension agents’ control, ultimately impacting the perceived behavioral control the agents had on situations (Ajzen, 1991).

Considering recommendations for Extension professionals, a need exists to better publicize programs and services offered from the county offices to increase awareness and community participation. This can be done through local news organizations such as newspapers, radio stations, social media, and news channels. Although the pandemic has provided its share of challenges, the increased availability for virtual programming has some benefits, such as being able to reach a broader audience across the state who previously never participated in Extension programming. Moving forward it is recommended that Extension consider ways to offer programming in-person and virtually to continue to expand the diversity of people being reach for programming. Perhaps, with a collaborative effort Clemson Extension could make a greater impact on the future of agriculture across the state, as agriculture makes an impact on everyone’s daily life. Extension professionals should consider the findings as a starting point to evaluate the current state of Extension programming and how to best move forward to address pertinent agricultural issues.

Realizing the conclusions and implications addressed in this study, it is recommended that Cooperative Extension Services consider the following actions:

  1. Initiate an assessment of State Cooperative Extension Service staff to develop a comprehensive guide on best management practices in the event of future events of the magnitude experienced from the COVID-19 pandemic;
  2. Develop a series of in-service offerings on communications tools for delivery of online programming, provided at different skills levels;
  3. Coordinate with agencies that provide professional development in awareness of mental health issues and recommended practices and resources available, and
  4. Establish a review team of IT experts for the Cooperative Extension Service that will develop a standard protocol to assure that technologies (laptops, scanners, etc.) needed for online delivery and required Internet access will be available for staff to successfully complete their programming remotely as needed.

References    

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision 
            process, 50
(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Centers for Disease Control and Prevention (CDC). (2020). Situation summary. https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/summary.html

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry & research design: Choosing among five approaches (4th ed.). Sage.

Dale, D. D., & Hahn, A. J. (Eds.). (1994). Public issues education: Increasing competence in resolving public issues. University of Wisconsin.     

Glasser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine.

Glesne, C. (2016). Becoming qualitative researchers: An introduction (5th ed). Pearson.

Hamilton, S. F., Chen, E. K., Pillemer, K., & Meador, R. H. (2013). Research use by cooperative extension educators in New York State. Journal of Extension, 51(3). http://www.joe.org/joe/2013june/pdf/JOE_v51_3a2.pdf

Murphrey, T. P., Lane, K., Harlin, J., & Cherry, A. L. (2016). An examination of pre-service agricultural science teachers’ interest and participation in international experiences: Motivations and barriers. Journal of Agricultural Education, 57(1), 12-29. https://doi.org/10.5032/jae.2016.01012 

Robinson, J., & Poling, M. (2017). Engaging participants without leaving the office: Planning and conducting effective webinars. Journal of Extension, 55(6). https://joe.org/joe/2017december/tt9.php

Rumble, J. N., Lamm, A. J., & Gay, K. D. (2018). Identifying Extension Agent Needs Associated with Communicating about Policies and Regulations. Journal of Agricultural Education, 59(4), 72–87. https://doi.org/10.5032/jae.2018.04072

Jolley, J. (2007). Choose your doctorate. Journal of Clinical Nursing, 16(2), 225–233. https://doi.org/10.1111/j.1365-2702.2007.01582.x

Palaganas, E. C., Sanchez, M. C., Molintas, M. P., & Caricativo, R. D. (2017). Reflexivity in qualitative research: A journey of learning. The Qualitative Report, 22(2), 426–438. https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=2552&context=tqr

Patton, D. B., & Blaine, T. W. (2001). Public issues education: Exploring extension’s role. Journal of Extension, 39(4). http://joe.org/joe/2001august/a2.html

Privitera, G. J. (2017). Research methods for the behavioral sciences (2nd Ed.).Sage.

Rasmussen, J. L. (1989). Data transformation, type I error rate and power. British Journal of Mathematical and Statistical Psychology, 42(2), 203–213. https://doi.org/10.1111/j.2044-8317.1989.tb00910.x

Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sci, 4, 155–169. https://doi.org/10.1007/BF01405730

Rogers, E. (2003). Diffusions of Innovations (5th ed.). Free Press.

Salkind, N. J. (2012). Exploring research (8th ed.). Prentice Hall.

United States Census Bureau. (2021). South Carolina counties by population. https://www.SouthCarolina-demographics.com/counties_by_population              

United States Department of Agriculture National Institute for Food and Agriculture (USDA-NIFA). (2021). Cooperative extension system. https://nifa.usda.gov/cooperativeextension-system

Clemson Cooperative Extension. (2021). Cooperative Extension. https://www.clemson.edu/extension/about/index.html

World Health Organization (WHO). (2020). Coronavirus disease 2019 (COVID-19) situationreport–51. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf’sfvrsn=1ba62e57_10

           

Everyday People in Agriculture: Our Voices, Our Concerns, Our Issues

Chastity Warren

Dr. Chastity Warren English, Professor of Agriscience Education at North Carolina A&T State University, presented the 2023 Distinguished Lecture at the Southern Region Conference of the American Association for Agricultural Education in Oklahoma City, Oklahoma. Dr. Warren English’s talk focused on the importance of diversity, equity, inclusion, and belong in agricultural education and allied sectors while also highlighting her lived experiences in the discipline. She also illuminated the concerns of her students in an 1890 Land-grant University context. This article is a philosophical work based on her distinguished lecture…

Read More

Motivating Students to Conduct High-Quality Supervised Agricultural Experience Programs: A Collective Case Study

Jillian G. Bryant, University of Georgia, jilliangbryant@gmail.com

Eric D. Rubenstein, University of Georgia, erubenstein@uga.edu

Jason B. Peake, University of Georgia, jpeake@uga.edu

PDF Available

Abstract

Supervised Agricultural Experience (SAE) Programs are often regarded to be the most challenging component of the three-circle model of Agricultural Education. The literature reported a strong belief in the philosophy of SAE but a lack of engagement for teachers and students (Retallick, 2010; Wilson & Moore, 2007). This collective case study aims to provide a narrative for how successful teachers motivate students to engage in high-quality SAE programs. The data revealed that within the context of these three cases, requiring SAE as part of a grade, dedication of caring teachers, building SAE programs over time, being flexible in SAE categories, connecting to student interests, and intentional planning were key to successful SAE implementation. These results have implications for how teachers structure SAE programs in their classrooms, how teacher educators prepare pre-service teachers, and the direction of future research in SAE.

Keywords: Supervised Agriculture Experiences, High-Quality SAE, Motivation, Case Study

Introduction

The Supervised Agricultural Experience (SAE) Program is a valued, yet underutilized circle of the three circle model of Agricultural Education (Phipps et al., 2008). Teachers repeatedly reported that time constraints, juggling supervision of many projects, lack of a clear definition of what constitutes a high-quality program, and a stronger pull towards awards-based FFA endeavors limited their success in motivating students to engage in SAE programs (Dyer & Osborne, 1995). However, teachers have continued to preach the philosophical belief in SAE, creating a paradox between theory and practice (Retallick, 2010; Wilson & Moore, 2007). Agricultural educators have reported difficulty implementing SAE in practice even though they have valued it conceptually (Dyer & Osborne, 1995; Retallick, 2010; Wilson & Moore, 2007). This paradox in research and reported practices creates a lack of clarity in what is truly happening in successful Agricultural Education programs in regards to SAE. This divide of philosophy and practice leads us to question how agricultural educators motivate students to develop and implement high quality SAE programs.

 The Council for Agricultural Education identified four factors to consider when determining a student’s SAE is “high-quality” (NCAE, 2015). The four factors were: (a) the project must be well-planned, documented, and supervised, (b) the program must be agriculturally-focused, (c) the program should be student-driven rather than teacher-driven, and (d) the program should happen outside of regular classroom instruction (NCAE, 2015). The majority of Agricultural Education research was found by Dyer et al. (2003) to be quantitative in nature, using applied research methods. This collective case study aims to provide a rich narrative describing the phenomenon of student motivation to develop a well-structured SAE program, a need that was suggested by Dooley (2007).

Theoretical Framework

This research was grounded in the theoretical framework of achievement motivation. Achievement motivation refers to “striving to be competent in effortful activities” (Elliot & Church, as cited by Schunk, 2012, p. 358). The theory posits that individuals are motivated to act because of a desire to satisfy a need (Schunk, 2012). Under the umbrella of achievement motivation, Atkinson (1957) developed the expectancy-value theory of achievement. This theory suggests that an individual’s behavior is dictated by their expectancy of achieving a goal or reinforcer as a result of performing a certain task or behavior relative to how much one values the outcome (Schunk, 2012).

According to Atkinson (1957), achievement motivation, is a stable character trait of an individual. Atkinson postulates that tasks that are difficult to achieve create a greater incentive to work hard at the task. This is motivated by pride at accomplishing difficult tasks (Schunk, 2012). This model makes the prediction that students with high achievement motivation will choose tasks of intermediate difficulty because of their belief in its attainability, which produces a sense of accomplishment (Schunk, 2012). For these students, tasks deemed as too difficult will be avoided because of the unlikely probability of success, while tasks deemed as too easy will provide little sense of accomplishment when achieved. In contrast, students with low achievement motivation tend to choose easy or difficult tasks (Schunk, 2012). 

There are likely numerous motivational explanations for student involvement in high-quality SAE programs. In order for teachers to be able to implement SAE programs with efficacy, understanding these motivations is crucial. If teachers can begin to understand how to influence the expectancy-value theory of achievement motivation on student SAE engagement, as well as manipulate it, SAE achievement could increase. This study aims to provide a narrative through the lens of achievement motivation about how and why students are motivated to engage in high-quality SAE programs. Specifically, this study aims to provide insight to how teachers can influence a student’s tendency to approach an achievement-related goal.

Purpose

The purpose of this study was to investigate how teachers motivate students in Agricultural Education programs to conduct high-quality SAE programs. This collective case study analysis of how agricultural educators implement SAE in [State] sought to answer the following questions:

1. What factors influence a teachers ability to implement SAE within their Agricultural Education programs?

2. How do teachers motivate students to participate in high-quality SAE programs?

Methods

This research follows a case study model as described by Yin (2014). A case study is one of the most frequently used methodologies in qualitative research. However, given the unique approach of case study research, it does not have a well-defined set of protocols. A case study defines a case as a contemporary phenomenon within its real-life context, whether it be simple or complex in nature (Stake, 2013; Yin, 2014). All cases are defined by the individual teacher in each program and all programs and teachers are unique to the community in which they are located.

Participants

The researchers contacted Agricultural Education State Staff in each of the three agricultural education regions to nominate teachers who they believed conducted high-quality SAE programs as defined by the National Council for Agricultural Education (2015). The qualifications were a well-planned, documented, and supervised program, a program that is agricultural in nature, is student driven, and occurs outside of traditional classroom instruction. Once nominations were received, nominees were contacted via email to complete an eight-question survey instrument that was used for determining their fit for the study. Once the survey was completed, the responses were reviewed by the research committee to determine if each individual nominated met the outlined criteria for conducting high-quality SAE programs.

Data Collection

The teachers who met the criteria were sought after for permission and acceptance to participate in the interview. Two teachers were interviewed through an online video conference software, Google Hangouts while one teacher was interviewed face-to-face. The interviews followed a semi-structured interview format focusing on the individual teacher’s philosophy regarding SAE, how SAE was implemented in their programs, and what they believe motivated student to conduct high-quality SAE programs. All interviews lasted between 33 and 59 minutes where teachers engaged in a converstaional interview environment where they freely shared their thoughts about incorporating SAE into their programs. Interviews were recorded and transcribed for analysis using Temi, an online transcription service.The lead researcher reviewed each transcript for accuracy. During transcription, all participants were given a pseudonym and any other identifiers removed to ensure anonymity was maintained. Weft QDA, a digital qualitative analysis software, was used to code for themes.

To ensure cross-case analysis, Lincoln and Guba’s (1985) constant comparative method was utilized. After initial individual analysis, researchers met to discuss findings and compare perspectives. The final themes were shared with the participants to ensure triangulation of the data through member checking and peer debriefing. During this study researchers kept methodological journals to document methodology decisions and reflection to ensure reliability and trustworthiness (Dooley, 2007). In order to establish trustworthiness and rigor, the researchers engaged in prolonged engagement, thick descriptions, and reflexivity (Lincoln & Guba, 1985).

Subjectivity Statement

The researchers were actively involved in agricultural educationand believe that SAE is an integral and valuable component of the Agricultural Education model. Having engaged in an SAE as a student as well as fully incorporating SAE programs into their Agricultural Education programs, the researchers believe that all teachers should have every students engaging in an SAE program. The researcher has developed a model for SAE in an urban setting and shared that model with other teachers through professional development workshops.

Findings

Case Study 1: Setting the Context

Ms. Jennifer Roberts excitedly introduced herself, her background, and her teaching career. She came from an Agricultural Education background, having been a student in a strong program with “great teachers” before making the choice to become an agricultural educator.  She taught approximately 170 students in an area she defined as somewhere in between suburban and rural in [State]. All students in her program were required to conduct and maintain a SAEprogram as part of their grade in her classroom. Ms. Roberts taught in a single-teacher program with approximately 1,400 students enrolled at the high school.

Connecting to student interests

She admitted not all students who enter her classroom have an intrinsic interest in agriculture or plan to pursue agriculture as a career after graduation. However, she expressed her strong belief that teachers must take the time to connect agriculture to student interest to assist them in developing their SAE. Ms. Roberts shared, “I have students who are in art, we’ve got to figure out a way to tie your art in with agriculture, we need to be able to tie in every student, doesn’t necessarily have to be the typical ag kids.”

By connecting students who are otherwise uninterested in agriculture to SAE programs that meet their needs, Ms. Roberts believed she was able to show students an elevated level of caring. Ms. Roberts noted, “maybe they’re (SAE) supposed to be more traditional, but I don’t think the student is traditional anymore. So, I don’t think that she has to be … sometimes you got a gamer kid. You got to figure out something else that they like.” Beyond this, Ms. Roberts explained that perhaps the entire point of SAE is to tie in non-traditional students with a learning opportunity directly connected to agriculture. The best part of SAE programs, to her, was having the opportunity to observe what students can do in agriculture when motivated by an SAE program directly connected to their interests. Ms. Roberts firmly believed, “with student driven and non-traditional kids, I think the really cool part about an SAE is that if I was told that was my homework project and then I could choose what it was, I think I probably would’ve liked homework.” Although Ms. Roberts discussed connecting non-traditional students to SAE frequently, she did not discount the importance of SAE programs for students who may already have an interest in agriculture or may be conducting a project at home that resembles an SAE. The important thing to her was taking the students’ projects to the next level to further expand student opportunities and learning in something they already had as an interest. Ms. Roberts stated, “if you have a kid who already does something in wildlife, the only difference in your project now is we want to develop it with record keeping skills … let’s add your expenses, inventory, income, and your time.”

Extending learning outside of the classroom through career connection

As Ms. Roberts discussed how she motivated students to engage in high-quality SAE programs, multiple times she brought the conversation back to taking student learning beyond the classroom and connecting SAE programs to student career interests. She explained how students were often more motivated to engage in an SAE if they were given the opportunity to explore career areas in which they were interested. For some students, it was about discovering a career they did not even know they enjoyed. For others, it was about discovering new areas within a career interest. Ms. Roberts excitedly shared, “what’s really fulfilling as a teacher is watching them take that even farther. Because there are those that do they make a career out of it. That’s what’s cool. You know, I don’t know that it’s always great.” This was the case even with non-agriculture related careers. Ms. Roberts gives the example of a student who wants to be a Pre-K teacher. Ms. Roberts discussed setting her up with a local Pre-K teacher to come up with agricultural lessons to teach her students. Mrs. Roberts added, “if a kid says, I wanted to take agriculture because I like it, but I really want to be a Pre-K teacher. I’ve got some Pre-K teachers and kindergarten teachers who would love for you to come and teach lessons.”

Case Study 2: Setting the Context

Ms. Lindsey Carter taught in a high school outside of a major metropolitan area in [State]. The community, on paper, was considered urban; however, agriculture and farming were still major pillars of the community, with strong agricultural education programs throughout the county. Ms. Carter teaches approximately 120 students in a high school over with 1,400 students. Ms. Carter excitedly discussed how she incorporated SAE in her classes while also vocalizing ideas she has to make her program even better. Her desire to improve does not end with her ideas for SAE, as she is currently working on her doctorate degree while teaching full-time and raising two children. She was willing to share ideas and resources without ever suggesting she is the one with all of the answers.

Breaking from traditional views of SAE programs

While she was a firm supporter of agriculture, and believed that students who continue in her program should have agricultural focused SAE programs, she also believed some leniency was needed to help meet students where they were in their interests and career goals. Ms. Carter shared, “some teachers are determined they don’t want kids working at fast food. They don’t want them babysitting. I’m okay with it, that first year it’s about learning what you want to do, don’t want to do, and keeping records.” Ms. Carter was not afraid to challenge the status quo and critique the norms that had been put in place for SAE programs. Her belief in helping students achieve success through SAE programs in any way she can allowed her to remain flexible yet keep standards high. Ms. Carter passionately shared, “I’ve got to meet my kids where they are and sometimes the powers that be may think, oh well that’s not qualified to be a state degree. It is all that this kid could do and they need to be rewarded.”

Building student SAE programs over time

Much of the interview with Ms. Carter was focused on the early stages of establishing high-quality SAE programs with first year students. The steps she took to set the foundation for these programs was of high-importance, and something she believed was key to the success of her students’ SAE programs. Ms. Carter would ask students, “Well what can you do? What’s an idea? What does your parents do? You know, like is there a job that they have that you can go and hang out with them? What do you want to do when you grow up?” Ms. Carter maintained that by planning to build over time and setting a solid foundation in the introductory level classes, she could step back and allow the students to continue in their SAE on their own. Ms. Carter noted, “so at the beginning when we first started it, I pound record keeping in their head, like we log in to AET (Agricultural Experience Tracker) a once a week and I show them how to log their hours and then we do checkpoints.”

Setting high expectations

Ms. Carter required that 100% of her students completed an SAE program as part of the class grade. Although this took a vast amount of work to grade and assist students, she refused to allow students to turn in something that was below their ability. Ms. Carter would tell student “if you’re not going to do a genuine project, please don’t waste my time and I want it to be genuine and if you can’t come up with something that is genuine then let’s find something.” As Ms. Carter discussed working with her students to build SAE programs, it was clear that she cared deeply for them. This care served as a strong motivator for students to do well in their SAE programs and reach the expectations put before them. Ms. Carter shared, “some of my students are so invested in the program and in, in me and they want to impress me. They want to do good for me. They, they want to reach whatever standard that I put for them.”

Career skills

Ms. Carter expressed her prioritization of connecting students to opportunities that promoted career knowledge and skill. She believed the experience students gained from a high-quality SAE program opened the door for students to enter a job market that was often difficult to infiltrate without prior experience. Ms. Carter believed, “it’s more about two things, giving them the opportunity to get a skill so that they can hopefully get a job. And get some type of experience to get the job.” In addition to this, Ms. Carter also finds SAE to be a valuable opportunity for students to gain opportunities about the careers they are interested in before they make a commitment to pursue a specific field. She finds that through being able to go to a veterinarian’s office and shadowing the day-to-day operations, or doing landscaping for a summer job, students can learn the realities of those jobs to decide whether or not the job is right for them. These experiences, can allow students to figure out if the career goals they have are right for them. Ms. Carter stated, for example students who “want to be a veterinarian and they go and they shadow so then when they get to vet school it’s not such a shock that they have to know Latin terms or such a shock that these are the equipment.”

Case Study 3: Setting the Context

Mr. Jeff Thompson was a veteran teacher who taught middle school agriculture for nearly two decades before moving to high school agriculture for the last seven years. Mr. Thompson taught in a two-teacher Agricultural Education program, with agricultural mechanics being the primary pathway of focus. Between the two teachers at Mr. Thompson’s school, 298 agricultural education students were served among a population of 1,200 students. All students in the program were required to develop and maintain a SAE program. When speaking with Mr. Thompson, the typically subdued teacher exuded excitement about SAE programs. This excitement showcased his passion for SAE programs, and his philosophies were clear in the interview.

Well-planned

As Mr. Thompson spoke about how students engage in SAE programs in his program, nearly every interview question prompted him to mention the importance of planning in a successful, high-quality SAE project. He referred to this not only in the beginning planning stages of student SAE programs but also in building the SAE programs over time. Mr. Thompson firmly believed, “we can’t just do it for a week or two and be done, but we’ve got to go back, check and balances. We’ve got to have a plan, we got to follow up with the plan.” He credited student success in SAE to spending the time to have students plan their SAE programs when they begin. This includes goals, steps in the process, and developing a benchmark for the students to be able to know whether or not they accomplished their goals. Mr. Thompson added, “if they can’t see the end result, they’re not going to buy into it. They got to say, okay, I’ll do this idea, this might work.”

Building from student interest

Student interest in their SAE programs was also an important factor in Mr. Thompson’s students’ success. He stated the importance of doing more than just making it a required portion of their classroom grade to shift the SAE to high-quality. Mr. Thompson added, “so it’s going to be something that they’re interested in. It’s got to be something that gains their interest long term, can’t just be something Ima grade it and it goes away.” By connecting his students with SAE programs that tap into their interests, Mr. Thompson believes he can show his students what possibilities are out there for starting a career that relates to their interests. This connection allows students to dive deeper into their SAE and develop important soft skills. Mr. Thompson shared, “it’s valuable because it gives the kids the hands-on experience that you cannot really teach in class. … It lets them see the real-world application of what they’re interested in.”

Influence of technological advancement

Mr. Thompson reported the impact of new recordkeeping abilities and structure through the AET. The resource, Mr. Thompson shared, allowed students to continue to think about and work on their SAE programs in a way they had not before. Mr. Thompson shared, “the AET program keeps it in front of them, they have to plan it and follow through because it’s on paper, it’s on the computer and hopefully next year they can pick up where they left off and continue growing their project.” Mr. Thompson also expressed the impact AET on the number of students who turn in their SAE projects each year, and how it has changed how intentional he as well as his students have been in the SAE planning and implementation process.  Mr. Thompson stated, “if you’re going to have the SAE projects, you’ve got to be intentional. My projects have gotten better as a result of AET record keeping. I’ve got more kids participating, turning projects in.”

Conclusions

Based on these case study findings, there were broad themes that come forth in a cross-case analysis. Although the information presented in this case study is useful, it is important to note that generalizations should not be made beyond the scope of the three cases.

Caring, dedicated teachers

The three teachers each expressed a genuine interest in engaging students in SAE programs because they believed it was a worthwhile and valuable experience for students. The teachers interviewed expressed how much they valued the career skills, personal development, and experience students gained in their SAE programs. The influence of agricultural educators has been suggested time and time again to be a critical component of successful SAE programs (Dyer & Osborne, 1995; Philipps et al., 2008; Retallick, 2010; Rubenstein et al., 2014).

Mandating SAE as part of a classroom grade

Each of the three educators interviewed required SAE programs as part of their classroom grade. This finding was supported by research from Rubenstein and Thoron (2015). This practice was a crucial piece for rebuilding SAE programs and helping students gain the important skills from SAE. In order to accomplish this feat, all of the subjects reported taking the time to allow students to express their interests and future goals at the beginning of the planning process, and helped students develop an SAE that connected to those interests and goals. This allowed the students to receive the grade they desired while simultaneously gaining critical skills and experiences through their SAEs. By receiving a grade for their SAE, students are driven to be successful due to their need to strive for competence within their SAE program, further supporting achievement motivation as a foundational element to SAE program implementation.

Connection to student career interests and goals

Regardless of whether or not students wanted to go into an agriculturally-related career, all three teachers worked to connect student SAE programs to their future careers. This connection may come through a very specific skills, such as welding or 21st century skill acquisition that students gain through conducting a high-quality SAE program. It has been reported that student interest in SAE programs has contributed to success throughout the history of Agricultural Education (Bird et al., 2013). This conclusion aligns with the work of Atkinson (1957) in expectancy-value, where students are dictated by their expected success of achieving a goal they set for themselves at the beginning of an SAE program.  

Flexibility within SAE

Retallick (2010) reported teachers believed the agricultural education system, FFA award system and SAE categories caused issues with the implementation of SAE. All three teachers in this study expressed the need to make connections to student interests and, at times, stretch what might be considered a true SAE. Nonetheless, the teachers vocalized how these projects were still providing students with the same important skills all SAE should provide. While clear themes exist, it appears that all teachers must make informed decisions based upon their own community and program to ensure that SAE continues to thrive. 

In order to increase the motivation of students to engage in SAE programs the following recommendations are made for teachers:

  1. Provide time in class to plan, design, implement, and record SAE programs,
  2. Give students the opportunity to express and match SAE programs to their interests,
  3. Require SAE programs as part of the classroom grade,
  4. Take the time to connect student interests to agriculture, even if not directly related, and,
  5. Reformat FFA award structures to recognize outstanding student SAE that may not fit in a traditional category.

This study brought to light many critical components of motivating students to conduct high-quality SAE Programs. The following are recommendations for future research:

  1. Increase the amount of case studies being done to provide a rich narrative of SAE implementation,
  2. Conduct research directly with students on their motivations to start and continue with SAE,
  3. Study the practices of teacher preparation programs and how they prepare preservice teachers for SAE, and,
  4. Investigate the value of reported career skills gained through SAE programs.

In addition to teachers and additional research studies, the following recommendation are for teacher education programs:

  1. Perservice teachers need to engage in an SAE program in college to better understand the requirements they are setting for their students,
  2. Teacher educators should plan for instruction in SAE to be a core component of their teacher preparation program, and,
  3. Preservice teachers should be expected to visit agricultural education programs to see how inservice teachers are conducting high quality SAE program visits. 

References

Bird, W., Martin, M. J., & Simonsen, J. C. (2013). Student motivation for involvement in supervised agricultural experiences: A historical perspective. Journal of Agricultural Education 58(1),31-46. https://doi.org/10.5032/jae.2013.01031.

Croom, D. (2008). The development of the integrated three-component model of agricultural education. Journal of Agricultural Education, 49(1), 110-120. https://doi.org/10.5032/jae.200801110.

Dooley, K. E. (2007). Viewing agricultural education research through a qualitative lens. Journal of Agricultural Education, 48(4), 32-42. https://doi.org/10.5032/jae.2007.04032.

Dyer, J. E., Hasse-Wittler, P. S. & Washburn, S. G. (2003). Structuring agricultural education research using conceptual and theoretical frameworks. Journal of Agricultural Education, 44(2), 61-74.

Dyer, J. E., & Osborne, E. W. (1995). Participation in supervised agricultural experience programs: synthesis of research. Journal of Agricultural Education, 36(1), 6-14. https://doi.org/10.5032/jae.1995.01006.

Dyer, J. E., & Osborne, E. W. (1996). Developing a model for supervised agricultural experience program quality: A synthesis of research. Journal of Agricultural Education. 37(2), 24-33.

Dyer, J. E., & Williams, D. L. (1997). Benefits of supervised agricultural experience programs: a synthesis of research. Journal of Agricultural Education, 38(4), 50-58. https://doi.org/10.5032/jae.1997.04.050.

Lincoln, Y. S. & Guba, E. G. (1985). Naturalistic inquiry. Sage Publications.

National Council for Agricultural Education. (2015). Philosophy and guiding principles for execution of the supervised agricultural experience component of the school based agricultural education Program. Retrieved from: https://www.ffa.org/SiteCollectionDocuments/sae_guiding_principles.pdf.

Phipps, L. J., Osborne, E. W., Dyer, J. E., & Ball, A. (2008). Handbook on agricultural education in public schools (6th ed.). Thompson Delmar Learning.

Retallick, M. C. (2010). Implementation of supervised agricultural experience programs: The agricultural educators’ perspective. Journal of Agricultural Education, 51(4), 59-70. https://doi.org/10.5031/jae.2010.04059.

Roberts, T. G., Dooley, K. E., Harlin, J. F., & Murphrey, T. P. (2007). Competencies and traits of successful agricultural science teachers. Journal of Career and Technical Education, 22(2),6-17. Retrieved from: https://ejournals.lib.vt.edu/index.php/JCTE/article/view/ 455/399.

Rubenstein, E. D., Thoron, A. C., Conclasure, B. C., Gordon, J. A. (2016). Supervised agricultural experience programs: An examination of the development and implementation of urban programs. Journal of Agricultural Education, 57(4), 217-233. https://doi.org/10.5032/jae.2016.04217.

Rubenstein, E. D., & Thoron, A. C. (2014). Successful supervised agricultural experience programs as defined by American FFA degree star finalists. Journal of Agricultural Education, 55(3),162-174. https://doi.org/ 10.5032/jae.2014.03162.

Rubenstein, E. D., Thoron, A. C., & Estepp, C. M. (2014). Perceived self-efficacy of preservice agriculture teachers toward specific SAE competencies. Journal of Agricultural Education, 55(4), 72-84. https://doi.org/10.5032/jae.2014.04072.

Schunk, D.H. (2012). Learning theories: An educational perspective. Pearson Education, Inc.

Stake, R. (2013). The art of case study research (pp. 49-68). Sage Publications.

Wilson, E. B., & Moore, G. E. (2007). Exploring the paradox of supervised agricultural experience programs in agriculture education. Journal of Agricultural Education, 48(4), 82-92. https://doi.org/10.5032/jae.2007.04082.

Yin, R. K. (2003). Case study research: Design and methods. Sage Publications.