Category

Vol. 73

Implications of Pandemic Responses for Extension Education and Outreach

Samuel Quinney, Clemson Extension, squinne@clemson.edu
Grace Greene, Clemson University, mgg2@g.clemson.edu
Christopher J. Eck, Oklahoma State University, chris.eck@okstate.edu
K. Dale Layfield, Clemson University, dlayfie@clemson.edu
Thomas Dobbins, Clemson University, tdbnns@clemson.edu

PDF Available

Abstract

As part of daily tasks of Cooperative Extension, agents handle public issues by offering programming by approved methods to inform the public. Within the context of this study, a mixed-methods approach was established to determine the factors impacting behaviors associated with Clemson Extension, programming efforts, and roles during the COVID-19 pandemic. Understanding the attitudes and perceptions of Extension educators and key stakeholders (i.e., advisory committee members), researchers, faculty, and Extension educators can be better prepared to face future challenging while continuing to meet the public demand. This exploratory, mixed methods inquiry investigated the perceptions of current Clemson Extension agents across South Carolina and Extension advisory committee members related to the ongoing COVID-19 pandemic and Extensions response. To meet the needs of this mixed methods approach, qualitative interviews were conducted with Extension agents and a survey questionnaire was utilized to collect pertinent data from Extension advisory committee members. Through this study, strengths and challenges for South Carolina Cooperative Extension Agents during the COVID-19 pandemic were learned, providing a framework in the event of similar challenges in the future. Adaptability is key moving forward for Extension, as it allows Extension agents to meet the needs in their communities, serve their primary stakeholder groups, and improve overall perceptions of what they offer. Extension professionals should consider the findings as a starting point to evaluate the current state of Extension programming and how to best move forward to address pertinent agricultural issues.

Introduction/Theoretical Framework

“The pace of innovation in the agriculture-related, health, and human sciences demands that knowledge rapidly reaches the people who depend on it for their livelihoods” (USDA-NIFA, 2021, para. 1). Specifically, the Clemson Cooperative Extension (2021) service aims to “improve the quality of life of all South Carolinians by providing unbiased, research-based information through an array of public outreach programs in youth development; agribusiness; agriculture; food, nutrition and health; and natural resources” (para. 1). The normal day to day operations of Clemson Extension was brought to a halt on March 18th, 2020, after the World Health Organization (2020) declared the Novel Coronavirus or COVID-19, a global pandemic on March 11, 2020.

As part of daily tasks of Cooperative Extension, agents handle public issues by offering programming by approved methods to inform the public (Dale & Hahn, 1994; Patton & Blaine, 2001). Most issues originate as private concerns and become public when outside agencies become involved and widespread support or opposition is gained. This is often related to an identifiable problem, whereas others may arise from misinformation or inaccurate perceptions (Patton & Blaine, 2001). These contentious issues often create situations in which public input and education can be keys to solving the problem; however, due to the highly charged nature of such issues, many leaders tend to avoid them (Jolley, 2007; Patton & Blaine, 2001; Rittel & Webber, 1973). Clemson extension has always made it a priority to provide relevant programming to address these public issues.

During today’s societal changes of the COVID 19 Pandemic, agricultural communities have faced challenges. According to the United States Department of Agriculture (USDA) Economic Research Service (ERS) (2021), the total number of cash receipts by commodity has remained steady, with some commodities increasing between the years 2020 and 2021. Animals and animal products increased just under $8.6 billion, and crops increased just over $11.8 billion via cash receipts reported by the USDA-ERS (2021). Some of these increases in consumer purchases have come through governmental policies, which increased American agriculture commodity purchases from foreign countries under the US and China trade deal. China will purchase and import $40 billion dollars’ worth of American agriculture products including meat goods (McCarthy, 2020), others came from a decrease in store availability, though no nationwide shortages have been reported (USDA, 2021). Though the total cash receipts have improved nationally, local agriculture producers face a distinct set of issues. Such issues include a misinformed public, slaughterhouse backups, and a lack of land availability. However, the agricultural cash receipts have yet to be reported for South Carolina according to the USDA-ERS (2021).

Clemson Extension was not alone, as schools, businesses and government agencies across the U.S. adapted to limit in-person contact (CDC, 2020). Extension agents had to cancel some scheduled programming and events and shift what they could to virtual platforms, such as Zoom, which has been identified as easy-to-use and engaging (Robinson & Poling, 2017). With the pandemic catching most off-guard, little account was taken into the perceptions, attitudes, and beliefs of Clemson Extension agents and advisory groups. To frame the evaluation of these concerns, the theory of planned behavior (Ajzen, 1991) was implemented (see Figure 1).

Figure 1

Ajzen’s (1991) Theory of Planned Behavior Model

The theory of planned behavior (Ajzen, 1991) “provides a useful conceptual framework for dealing with the complexities of human social behavior” (p. 206), as it provides a frame to outline the predictability of an individual’s future plans and behaviors (Ajzen, 1991). The theory of planned behavior has further been implemented (Murphrey et al., 2016) to evaluate one’s perceptions and/or intentions related to formal and informal training (i.e., Extension programming). Within the context of this study, a mixed-methods approach was established to determine the factors (i.e., attitude toward the behavior, subjective norms, and perceived behavioral control) impacting behaviors associated with Clemson Extension. Specifically, programming efforts (i.e., attitudes), roles (i.e., norms), issues (i.e., attitude and perceived control), and solutions (i.e., intentions) were addressed to establish best practices learned from the COVID-19 pandemic. Understanding the attitudes and perceptions of Extension educators and key stakeholders (i.e., advisory committee members) allows researchers, faculty, and Extension educators to be better prepared to face future challenges while continuing to meet the current public demand.

Purpose and Research Objectives

During today’s societal changes, Clemson Extension has expanded its role to provide education to the public through virtual and other non-contact options. Therefore, this study aimed to determine the perceptions of Clemson Extension agents and the prevalent issues faced within the agriculture community in the South Carolina by interviewing Extension agents and surveying Clemson Extension advisory committee members. Four research questions were developed to guide this study:

  1. Describe the current perceptions of Clemson Extension agents amidst the COVID-19 pandemic.
  2. Identify the greatest issues facing agriculture in South Carolina according to advisory committee members during the COVID-19 pandemic?
  3. Determine current and potential solutions from Clemson Extension to address the issues faced during the COVID-19 pandemic.
  4. Create a list of preferred programs and program delivery methods for future Extension programming.

Methods

This exploratory, mixed methods inquiry investigated the perceptions of current Clemson Extension agents across South Carolina (N = 154) and Extension advisory committee members (N = 64) related to the COVID-19 pandemic and Extensions response. To meet the needs of this mixed methods approach, qualitative interviews were conducted with Extension agents (n = 6) and a survey questionnaire was utilized to collect pertinent data from Extension advisory committee members.

Qualitative Inquiry Procedures

As with most qualitative inquiries, this study sought to provide rich information from the Extension agents as they adapt with the changing dynamics of the pandemic. A purposive sampling strategy was implemented to reach data saturation amongst the variety of agents across the state. This sampling method included soliciting participation from agents from all five regions and 10 program teams, resulting in interviews with six agents representing five program teams and all five regions spanning 15 counties, as some agents work in multiple counties. For proper tracking of data, each participating agent was provided a pseudo name that is outlined in Table 1.

Table 1

Clemson Extension Agents Who Participated in the Study (n = 6)

Pseudo Name Sex Region Program Team 
Shawn Male Region 4 Horticulture 
Abigail Female Region 1 4-H Youth Development 
Violet Female Region 5 Livestock & Forages 
Leonard Male Region 3 Forestry & Wildlife 
Keith Male Region 4 Agronomic Crops 
Taylor Male Region 2 Horticulture 

To address the overarching research objective of the qualitative inquiry, a flexible interview protocol was established spanning four topic areas, including: 1) Accessibility and program impacts; 2) Responding in a time of crisis; 3) Remote instruction and distance education; and 4) Economic and communication concerns early in the COVID-19 pandemic. Each topic area included probing questions to help facilitate conversation, helping to uncover the specific paradigm being studied. Glesne (2016) identifies the specific paradigm or reality being evaluated within this study as an ontology, as the study aimed to discover and individuals’ beliefs associated with their current reality, further connecting to the theory base (Ajzen, 1991) as we try to uncover future intentions. The interview protocol was checked for face and content validity (Salkind, 2012) by two faculty members with teaching and research experience in Extension education and research methodology. All six interviews were conducted by an undergraduate student minoring in Extension education following the interview protocol for consistency. Additionally, a fieldwork notebook was compiled by the interviewer to document the interview experiences through observation notes, interview notes, and reflexive thoughts (Glesne, 2016).

The interviews were conducted using Zoom due to the ongoing COVID-19 pandemic and University regulations. The interviews were recorded and transcribed using features embedded in the Zoom platform, which were then compared against one another for accuracy. In addition to the interview recordings and transcriptions, interviewer notes were used for triangulation of data. To further increase the trustworthiness of the study, the research team followed the recommendations of Privitera (2017) to establish credibility, transferability, dependability, and confirmability within the study. Creditability was addressed through coding member checks across the research team to reduce bias (Creswell & Poth, 2018) along with triangulation of data and saturation of emerging categories (Privitera, 2020). To enhance transferability the researchers described the participants (including pseudonyms), detailed the interview and data analysis process, and highlighted the perspectives of the participants. Procedural explanations and data triangulation furthered the dependability of the research (Creswell & Poth, 2018; Privitera, 2020), and a reflexivity statement was included to describe any inherent biases associated with then phenomenon (Privitera, 2020).

Confirmability refers to the objectivity of the findings and the ability to interpret the narrative of the experience of participants to determine the essence of the phenomena instead of the researcher’s bias (Creswell & Poth, 2018; Privitera, 2020). A reflexivity statement describes the researchers previous understanding of the phenom

To analyze the interview transcripts through a qualitative lens, this study implemented the constant comparative method (Glasser & Strauss, 1967), which permits the data to speak for itself, allowing themes to emerge. The first round of coding used open-coding sources, allowing themes to emerge through the process (Creswell & Poth, 2018). Axial coding was followed for second-round coding, where the relationships between open codes resulted in overarching categories (Creswell & Poth, 2018; Glasser & Strauss, 1967). Round three of coding was selective coding, where the researchers determined the core variables from the qualitative interviews.

The purposive sampling provides a limiting factor as only six Clemson Extension agents were interviewed for the purpose of this study. Therefore, the findings of this study are limited to the views of the participants and not necessarily that of all agents in the state, but the findings of the study can be used to inform practice, guide future research, and potentially offer state-wide implementations based on needs. The research team recommends caution when looking to generalize the data, although the data has transferable qualities if the readers deem the population and situations identified as germane to their inquiry.

Within a qualitative inquiry, Palaganas et al. (2017) recommends for researchers to acknowledge any inherent bias and reveal their identify to offer reflexivity. The research team consisted of two faculty members in agricultural education at Clemson, a current Extension educator, and an undergraduate student pursuing a minor in extension education. The faculty members have more than 30 years of experience combined in agricultural and extension education. We recognize our bias toward Extension because of our faculty roles and have attempted to harness that bias through a consistent interview protocol, interviewer, and extensive field notes.

Survey Research Procedures

This non-experimental descriptive survey research component aimed to reach Clemson Extension advisory committee members (N = 64) in Abbeville, Anderson, Greenville, Oconee, and Pickens counties in South Carolina. The counties selected to participate in the survey were selected for their vast differences, including suburban, rural agriculture/homesteads, small towns, and large cities. The populations of the participating counties were Greenville – 507,003; Anderson – 198,064; Pickens – 124,029; Oconee – 77,528, and Abbeville – 24,627 (United States Census Bureau, 2021).

The questions addressed in this study were designed to assess how the Clemson Cooperative Extension Service adapted during the COVID 19 pandemic. Survey questions were divided into three categories, 1) Agricultural issues, 2) Extension programming, and 3) Participant demographics. The agricultural issues category elicited open ended responses to determine the greatest issues facing agriculture and what Clemson Extension is and can do to help the issues. The second category aimed to determine the preferred program delivery methods and primary program teams of interest. The researcher-developed survey was reviewed for face and content validity by Agricultural Education faculty and Clemson Extension professionals.

Of the 64 advisory members who received the survey via email, 27 responded, resulting in a 42.2% response rate. Participants were 55.6% male and 44.4% female and ranged in age from 29 to 73 years old, with agricultural involvement varying from pre-production/production agriculture to agricultural consumers (see Table 2) across the five counties. Data was analyzed using SPSS Version 27 to address the proposed research questions.

Table 2

Personal and Professional Demographics of Extension Advisory Committee Members in South Carolina (n = 27).

Demographics   f %
Gender Male 15 55.6
  Female 12 44.4
  Prefer not to respond 0 0.0
Age 21 to 30 1 3.7
  31 to 40 5 18.5
  41 to 50 3 11.1
  51 to 60 8 29.6
  61 to 70 4 14.8
  70 or older 6 22.2
  Did not respond 0 0.0
 Current Role in Agriculture Pre-Production  7.4 
Production1452.9
Consumer1037.03
 Did not respond 1 3.7

Findings

Research Question 1: Describe the current perceptions of Clemson Extension agents amidst the COVID-19 pandemic.

The emerging codes, themes, and categories were used to explain the perceptions of Clemson Extension agents related to the ongoing COVID-19 pandemic. Four overarching categories emerged from the findings.

Category 1: Extension is Adaptable

 Keith stated, “we’re used to getting things thrown in our lap, everybody in the world or everybody in the country says, you have any questions call your county extension agent,” which reinforced this concept. When considering the COVID-19 pandemic, Keith went on to say, “as far as agronomy agents and a lot of the horticulture agents, we’ve never quit visiting farmers, when they call, we go.” The changes caused by the pandemic looked different across the state, depending on the needs of community, which was encompassed through the thoughts of Extension professionals “adapting every single day and the pandemic just made it a big step, as opposed to little steps. We just had to figure out a way to continue to do what we’re already doing, just in a different format” (Leonard). Other interviews built upon these same lines of thought to demonstrate the overall adaptability of Clemson Extension.

Category 2: Need for Training and Resources

The greatest need indicated across the interviews was specific training and resources to help Extension professionals and constituents navigate the pandemic. Keith simply stated that “everybody’s been putting out fires and handling their own problems … and I think some help and some guidance with all our delivery programs would be great.” Abigail further identified “a big chunk of people who are probably [her] age and younger and then a couple of older ones who … are more traditional, who need some help.” The participants identified specific training needs for agents across the state related to Zoom, virtual programming, and mental health of both adults and youth, “because as the times change, new stuff comes up.” Additional resources were also discussed by participants as many Extension professionals “live out in the middle of nowhere and Internet does not come to [their] house” (Shawn), requiring them to work of a limited data hot spot, when the data is gone, they are without internet. Participants also expressed a need for computers “that can handle Zoom,” so they can utilize Zoom features and provide essential programming to constituents. The final resource need is for the community members Extension professionals aim to reach, as many farmers and ranchers struggle to engage using technology, which Leonard explained that “it’s not necessarily that they can’t do it, a lot of them just don’t have the ability. Your rural areas just don’t have computers.”

Category 3: Community Perceptions

Perceptions of the communities Extension professionals serve was expressed by Violet as, “we’ve been at this so long, I wonder about our relevance… I’m still making farm visits, but a lot of people think we’re closed.” Similarly, Taylor struggled “going from what we normally do and being the face of the public and the face of the university to everything [moving] online, was tough. The biggest struggle was getting over the hill of convincing yourself that this is the way it’s going to be and then having to convince clientele that this is the way it’s going to be for a little while.” The change in delivery was difficult for all involved and many are concerned with the impact of the pandemic on the relationship between the Extension professional and the clientele moving forward. Which, Violet expressed as her “greatest concern, is how to bring those people back and have them trust us again and know that we’re still working, we’re still here and we still deserve to be paid, that sort of thing. I’ve heard all those things so that’s probably what I’m worried about the most.”

Category 4: Reluctancy to New Methods

Violet explained that “certainly the Zoom capabilities are good, but there’s been some reluctance to use them from our older crowd, and, unfortunately most farmers are 65 and older.” She went on to express the hardships as “it’s been a little bit hard to pull them [older farmers] in and get them to really feel connected. They like our meetings for the information side of it, but also the community feel, and I think you do lose a little bit of that with the virtual sense or virtual realm.” In contrast, Taylor found a positive side to the new methods as “we’re reaching a lot more people, especially on our side of the team that probably wouldn’t normally come to a meeting because they can just jump on a computer now.” But he also went on to explain the reluctance as “a majority of our clientele is older, the Zoom thing is tough for them, the technology piece is tough… We picked up a lot of clients… but we probably have some frustrated clients because of it.”

Research Question 2: Identify the greatest issues facing agriculture in South Carolina according to advisory committee members during the COVID-19 pandemic?

The second research question focused on determining the greatest issue(s) currently facing the agricultural industry in South Carolina. Of the 27 respondents, two primary issues arose, the cost/lack of agricultural inputs and outputs, and the need for local produce and meat products. Table 3 outlines underlying issues that make up those broader categories.

Table 3

Greatest Issues Facing South Carolina Agriculture (n = 27)

CategorySpecific Issues
Cost/Lack of Agricultural Inputs and OutputsLand, Seed, Feed, Fertilizer, Chemicals; Slaughter Facilities
 Increased Cost due to Urban Sprawl; Market Fluctuations
Need for Local Produce and Meat productsCOVID Restrictions; Farmers Market and Open-Air Markets Closed

Research Question 3: Determine current and potential solutions from Clemson Extension to address the issues during the COVID-19 pandemic.

The third research question addressed the current and potential solutions Clemson Extension is currently providing or could provide to address issues in agriculture. Table 4 outlines the current solutions being offered, although 14.8% of respondents felt that nothing was currently available. The two current solutions include agricultural education and agricultural land loss prevention. Specifically, agricultural education represents the Making It Grow programming offered through South Carolina Educational Television (SCETV), information provided by the Home Garden Information Center (HGIC), 4-H youth development programming, and Extension programs/Education. The second solution to currently assist agriculturalists is the agricultural land loss prevention program focused on agricultural land easements offered through the USDA-NRCS office.

Table 4

Solutions Available for Current Agricultural Issues (n = 27)

Current SolutionsSpecific Program/Offering
Agricultural EducationMaking it Grow
 HGIC
 4-H Youth Programming
 Extension Programs/Education
Agricultural Land Loss PreventionAgricultural Land Easements-NRCS

In addition to current programs, respondents’ ideas for potential solutions were of interest to the research team. Respondents identified two categories of solutions, the first being to publicize Extension programs and services better, so the public have a better understanding of what Extension does and what is being offered. The second solution was an increase in agricultural education, specifically targeting small farms and farming for-profit programs, additionally youth education opportunities, along with specific education programming highlighting the historical importance of agricultural land and keeping that land in agricultural production. Much of this was connected to 56% of respondents identifying COVID-19 as having a specific impact on agriculture in the state. Specifically, one of the greatest concerns was the impact of virtual programming during the COVID-19 pandemic, as many individuals did not have access to virtual programming due to lack of technology or internet. A potential option that was presented was being sure to offer recorded (asynchronous) programming options versus the live (synchronous) options currently available.

Research Question 4: Create a list of preferred programs and program delivery methods for future Extension programming.

The final objective aimed to establish the preferred program delivery methods for future extension programming, along with current and future program interests. Table 6 outlines the preferred information delivery method of respondents.

Table 6

Preferred Information Delivery Method (n = 27)

Delivery Methodf%
Email933.3
Office Visits622.2
No Preference622.2
Farm Visits13.7
Phone13.7
Text Updates13.7
Fact Sheets13.7
Postal Mail13.7
Social Media13.7

In addition, 55.6% of participants said they would be willing to participate in future virtual programming if offered, while 22.2% of participants said they would not participate, and the remaining 22.2% were unsure. To further understand programmatic interests, participants were asked to identify which of the Clemson Extension Program teams had provided the most information during the pandemic, Table 7 outlines their responses.

Table 7

Programmatic Teams Offering the Most Programming During COVID 19

Program Teamf%
4-H725.9
Unknown622.2
Forestry and Wildlife414.8
Agricultural Education311.1
Horticulture311.1
Food Systems and Safety27.4
Livestock and Forages13.7
Rural Health and Nutrition13.7

Although 4-H was reported as the program team providing the most programming during the pandemic, participants expressed the most interest in more programming from the forestry and wildlife team (33.3%), followed by the agricultural education and livestock and forages teams, both with 26% of the respondents interested. The agribusiness team (22.2%) and the horticulture team (18.5%) rounded out the top five. The remaining program areas had less than 14% of participants interested.

Conclusions, Implications, and Recommendations

Through this study, strengths and challenges for South Carolina Cooperative Extension Agents during the COVID-19 pandemic were learned, providing a framework in the event of similar challenges in the future. As identified in the category one finding, “Extension is Adaptable,” discussed how agents continued to meet their constituent’s needs, but through use of many creative means. a benefit that will aide Cooperative Extension Agents is the ability to adapt quickly. This ability to adapt would support those aspects in the category two findings which identified a need for training/in-service of Cooperative Extension Agents and their constituents. Category three, “Community Perceptions,” is reflective of the anxiety and uncertainty that was commonly experienced during the pandemic. Shifts in time and locations of workplace during the pandemic created a variety of uninformed interpretations of staff labor and confusion among the clientele base. Category four, “Reluctancy to New Methods” was commonly thought to be a challenge, but during the pandemic, it became widely know that there are gaps in technological competencies. Altough Extension agents had negative perceptions about certain components of their ability to provide appropriate education and outreach to constituent groups, their overall intentions were positive leading to actionable behaviors (Ajzen, 1991) that made an impact in their communities and states.

According to the advisory committee members in this study, there are two primary issues (i.e., attitudes; Ajzen, 1991) facing agriculture (i.e., cost or lack of agricultural inputs and outputs and the need for local produce and meat products) in South Carolina. The first issue can be contributed to the availability of land due to urban sprawl as well as all input costs having significantly increased in spring 2021. Additionally, slaughter facilities have been waitlisted for the last year due to high demand for American meat products. The area of concern can be considered together with the first due to slaughterhouses being backed up, local meat producers are unable to get their product finished out and packed for sale. Open air markets and farmers have been under the mercy of local and federal government’s restrictions, which have limited or cancelled all opportunities for local produce to be made available (L. Keasler, personal communication, 2021). Although these issues are of concern, Extension has the opportunity to address some of them by providing timely and accurate information to those who need it most. This allows the agents to control what they can through communication, reducing the negative perception and informing stakeholders if the subjective norms (Ajzen, 1991) currently impacting agricultural production.

Extension can work with local producers to ensure that they are in contact with their local and state representatives to be made aware of the issues that American agriculturalists are facing in today’s environment. Extension can also provide more agricultural education to the general consumer to assist our agricultural producers in informing the community what issues they face to maintain their livelihood. Some things cannot be controlled, such as market fluctuations and processing facilities operation. However, agents can make public representatives aware of the issues, asking them to push these issues in front of our elected legislative bodies to enact change through governmental policies. According to Anderson and Salkehatchie counties Cattlemen’s Association members and meat producers (personal communication, January 12, 2021), the availability of funds to build more USDA certified handling facilities would increase the speed at which products can be made available to markets, as well as increase jobs in areas where these facilities are housed. Perhaps, inputs such as fertilizers and herbicides can be regulated by government to avoid price gouging when they are needed the most, making the big companies richer and the hard-working farmers pockets tighter to continue to make a living in production agriculture.

Local fruit and vegetable producers face a slightly different issue in that they are at the mercy of local, state, and federal mandates, only operating at full capacity when they are told it is safe to do so (L. Keasler, personal communication, 2021). Similarly, Extension is subject to these same mercies, although we have seemed to reach a new normal, the findings of this study can be beneficial for Clemson Extension and similar Extension agencies in other states.

The implications support the Theory of Planned Behavior (Ajzen, 1991), as agents recognized that they could adapt to meet the needs of their constituents during time of many unknowns and countless challenges demonstrates how favorable attitudes and intentions result in adaptable behaviors. These behaviors include the awareness of need for additional training and to seek resources to meet needs. Paradoxically, the resistance of many constituents to accept alternative programming methods presented opposing behaviors from the agents, creating additional challenges. Regardless, adaptability is key moving forward for Extension, as it allows Extension agents to meet the needs in their communities, serve their primary stakeholder groups, and improve overall perceptions of what they offer. Although it should be noted that many of the factors impacting Extension during the COVID-19 pandemic were outside of the Extension agents’ control, ultimately impacting the perceived behavioral control the agents had on situations (Ajzen, 1991).

Considering recommendations for Extension professionals, a need exists to better publicize programs and services offered from the county offices to increase awareness and community participation. This can be done through local news organizations such as newspapers, radio stations, social media, and news channels. Although the pandemic has provided its share of challenges, the increased availability for virtual programming has some benefits, such as being able to reach a broader audience across the state who previously never participated in Extension programming. Moving forward it is recommended that Extension consider ways to offer programming in-person and virtually to continue to expand the diversity of people being reach for programming. Perhaps, with a collaborative effort Clemson Extension could make a greater impact on the future of agriculture across the state, as agriculture makes an impact on everyone’s daily life. Extension professionals should consider the findings as a starting point to evaluate the current state of Extension programming and how to best move forward to address pertinent agricultural issues.

Realizing the conclusions and implications addressed in this study, it is recommended that Cooperative Extension Services consider the following actions:

  1. Initiate an assessment of State Cooperative Extension Service staff to develop a comprehensive guide on best management practices in the event of future events of the magnitude experienced from the COVID-19 pandemic;
  2. Develop a series of in-service offerings on communications tools for delivery of online programming, provided at different skills levels;
  3. Coordinate with agencies that provide professional development in awareness of mental health issues and recommended practices and resources available, and
  4. Establish a review team of IT experts for the Cooperative Extension Service that will develop a standard protocol to assure that technologies (laptops, scanners, etc.) needed for online delivery and required Internet access will be available for staff to successfully complete their programming remotely as needed.

References    

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision 
            process, 50
(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Centers for Disease Control and Prevention (CDC). (2020). Situation summary. https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/summary.html

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry & research design: Choosing among five approaches (4th ed.). Sage.

Dale, D. D., & Hahn, A. J. (Eds.). (1994). Public issues education: Increasing competence in resolving public issues. University of Wisconsin.     

Glasser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine.

Glesne, C. (2016). Becoming qualitative researchers: An introduction (5th ed). Pearson.

Hamilton, S. F., Chen, E. K., Pillemer, K., & Meador, R. H. (2013). Research use by cooperative extension educators in New York State. Journal of Extension, 51(3). http://www.joe.org/joe/2013june/pdf/JOE_v51_3a2.pdf

Murphrey, T. P., Lane, K., Harlin, J., & Cherry, A. L. (2016). An examination of pre-service agricultural science teachers’ interest and participation in international experiences: Motivations and barriers. Journal of Agricultural Education, 57(1), 12-29. https://doi.org/10.5032/jae.2016.01012 

Robinson, J., & Poling, M. (2017). Engaging participants without leaving the office: Planning and conducting effective webinars. Journal of Extension, 55(6). https://joe.org/joe/2017december/tt9.php

Rumble, J. N., Lamm, A. J., & Gay, K. D. (2018). Identifying Extension Agent Needs Associated with Communicating about Policies and Regulations. Journal of Agricultural Education, 59(4), 72–87. https://doi.org/10.5032/jae.2018.04072

Jolley, J. (2007). Choose your doctorate. Journal of Clinical Nursing, 16(2), 225–233. https://doi.org/10.1111/j.1365-2702.2007.01582.x

Palaganas, E. C., Sanchez, M. C., Molintas, M. P., & Caricativo, R. D. (2017). Reflexivity in qualitative research: A journey of learning. The Qualitative Report, 22(2), 426–438. https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=2552&context=tqr

Patton, D. B., & Blaine, T. W. (2001). Public issues education: Exploring extension’s role. Journal of Extension, 39(4). http://joe.org/joe/2001august/a2.html

Privitera, G. J. (2017). Research methods for the behavioral sciences (2nd Ed.).Sage.

Rasmussen, J. L. (1989). Data transformation, type I error rate and power. British Journal of Mathematical and Statistical Psychology, 42(2), 203–213. https://doi.org/10.1111/j.2044-8317.1989.tb00910.x

Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sci, 4, 155–169. https://doi.org/10.1007/BF01405730

Rogers, E. (2003). Diffusions of Innovations (5th ed.). Free Press.

Salkind, N. J. (2012). Exploring research (8th ed.). Prentice Hall.

United States Census Bureau. (2021). South Carolina counties by population. https://www.SouthCarolina-demographics.com/counties_by_population              

United States Department of Agriculture National Institute for Food and Agriculture (USDA-NIFA). (2021). Cooperative extension system. https://nifa.usda.gov/cooperativeextension-system

Clemson Cooperative Extension. (2021). Cooperative Extension. https://www.clemson.edu/extension/about/index.html

World Health Organization (WHO). (2020). Coronavirus disease 2019 (COVID-19) situationreport–51. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf’sfvrsn=1ba62e57_10

           

Everyday People in Agriculture: Our Voices, Our Concerns, Our Issues

Chastity Warren

Dr. Chastity Warren English, Professor of Agriscience Education at North Carolina A&T State University, presented the 2023 Distinguished Lecture at the Southern Region Conference of the American Association for Agricultural Education in Oklahoma City, Oklahoma. Dr. Warren English’s talk focused on the importance of diversity, equity, inclusion, and belong in agricultural education and allied sectors while also highlighting her lived experiences in the discipline. She also illuminated the concerns of her students in an 1890 Land-grant University context. This article is a philosophical work based on her distinguished lecture…

Read More

A Philosophical Perspective Revisiting Teaching “In” and “About” Agriculture

Blake C. Colclasure, Doane University, blake.colclasure@doane.edu

Brianna Shanholtzer, STEMscopes, brianna.shanholtzer@gmail.com

Andrew C. Thoron, Abraham Baldwin Agricultural College, andrew.thoron@abac.edu

R. Kirby Barrick, University of Florida, kbarrick@ufl.edu

PDF Available

Abstract

School-based agricultural education (SBAE) has evolved considerably in the last century. This philosophical perspective examines the history of formal agricultural education in the United States and explores how early contributions to agricultural education shaped the structure of modern SBAE. The divergent roles of agricultural education to: 1) provide a qualified agricultural workforce for the 21st century, and 2) educate students about agriculture, are discussed. Furthermore, a conceptual framework for the structure of K-12 agricultural education is proposed, which attempts to provide a solution to gaps in agricultural career readiness and agricultural literacy.

Keywords:agricultural education, agricultural literacy, agriculture workforce, career and technical education

Introduction

The modern agricultural industry in the United States looks far different from the farming operations that provided the country with food, fiber, and natural resources during the early 20th century (Conkin, 2009). Today’s agricultural industry has become more complex and globally interconnected (Ajibola, 2019; Ding & Qian, 2016). Trends in technological advancements have led to increased efficiency and strive to meet demands of a growing global population, while agricultural production has been confronted with social, political, and environmental challenges (National Research Council [NRC], 2009a). The new era of a technological advanced and industrialized agricultural landscape offers solutions to global food shortages, but must continue to take critical steps to be more sustainable and environmentally sensitive (Food and Agriculture Organization [FAO], 2015; FAO, 2017).

The transformational shift in agriculture production has redefined the once blue-collar American farmer. The next generation of agriculturalists require an advanced skillset beyond a general knowledge in agriculture. Twenty-first century “farmers” need to be interdisciplinary problem solvers and critical thinkers who can work collaboratively with diverse groups of people (NRC, 2009a). Furthermore, the new era of agriculture requires workers who are able to apply science and technology to confront challenges that are not yet known (Little, 2019). There has been no other time in history when the requirements of the agricultural worker have been more complex nor the supply of qualified agricultural workers so low (Whittaker & Williams, 2016). The pipeline of qualified agricultural workers appears be corroding and the changing agricultural landscape requires a new definition for the agricultural worker. Consequently, how we prepare the future agricultural workforce may require a new approach (NRC, 2009b).

To add to these challenges, as the agricultural industry battles the shortage of qualified workers (Whittaker & Williams, 2016), the industry is also being confronted with a society that lacks a connection to agriculture (Kover & Ball, 2013). A 2011 national survey conducted by the U.S. Farmers and Ranchers Alliance (USFRA) found that 72% of consumers indicated they know nothing or very little about farming or ranching (2011). A similar national-level survey sent one-year later indicated that more than one in four consumers are confused about the food they purchase and that young adults (i.e., 18- to 29-year-olds) are more confused about food purchases compared to other age groups (USFRA, 2012). However, the survey also revealed that nearly 60% of consumers desire to know more about how food is grown and raised and that lower-income households are particularly likely to say they want to know more but indicate not having the time or money to do so (USFRA, 2012).

Formal and informal educational programs designed to enrich students’ understanding of food and food systems have had a long history in America’s K-12 public education (Salin, 2018). However, these programs have waxed and waned along with shifts in educational theory and funding. Furthermore, socioeconomic gaps in educational opportunities remain. Due to the public’s expanding knowledge gap in agriculture (Kover & Ball, 2013) and growing concern about food production, formal school-based agricultural education (SBAE) needs to be well positioned to teach all students about agriculture in order for them to become informed consumers of agricultural goods and who possess a basic understanding of where food comes from and how it is produced.

Purpose

This philosophical paper explores the role and structure of SBAE in the United States to confront both the need for a modern agricultural workforce and an agriculturally-literate society. The historical development of agricultural education that has led to divergent pathways is discussed: teaching about agriculture and teaching in agriculture. A 21st century model for the structure of SBAE is proposed which attempts to conceptualize agricultural education as a solution to combat two existing gaps: (1) agricultural career readiness; and, (2) agricultural literacy.

Summary of SBAE Structural Development in the United States

The first account of agriculture being formally taught in the United States occurred in Georgia in 1733 when three men were hired to instruct individuals how to produce raw silk (Moore & Gaspard, 1987). Since then, vocational education, and specifically agricultural education, has been evolving. The first major push for vocational education occurred in the early 20th century when the nation’s growing industrial and agricultural societies called for a more practical education beyond liberal arts (Moore & Gaspard, 1987). Hallmark legislative actions, such as the 1862 and 1890 Morrill Acts along with the 1917 Smith-Hughes Act, provided the foundation for formal education in agriculture and mechanical arts across the United States (Barrick, 1989). The passage of the Morrill Act of 1862 supplied each state with funding to establish colleges for higher education in agriculture and mechanical arts, which placed importance on the need for public vocational education in higher education (Moore & Gaspard, 1987).  

The 1917 Smith-Hughes Act directly impacted public vocational education at the secondary level by providing federal funding for vocational programs. The Federal Government believed that vocational education was essential to the nation’s welfare and established the act to allow states to develop a system to design and deliver vocational education (Federal Board for Vocational Education, 1917). The resources provided by the Smith-Hughes Act inspired swift changes in secondary vocational education and established state boards of vocational education. The Smith-Hughes Act of 1917 had many rules for the allocation of federal funding. One rule in particular stated that “if a high school student was taught one class by a teacher paid in full or in part from federal vocational funds, that same student could receive no more than fifty percent academic instruction” (Prentice Hall Documents Library, 1998, para 8). As a result, the Federal Vocational Board divided the time of students enrolled in vocational education into three segments, 50 percent in shop work, 25 percent in closely related subjects, and 25 percent in academic course work. The division of student enrollment became known as the 50-25-25 rule (Hayward & Benson, 1993). The Smith-Hughes Act and the 50-25-25 rule guided agricultural education towards a more vocational approach, which emphasized agricultural trade skills and the preparation of students to become farmers (NRC, 1988).

For the next half century, vocational education remained nearly the same. Vocational education emphasized job-specific skills, nearly eliminating theoretical content, and became increasingly segregated by subject matter (e.g., agriculture, industrial arts, home economics). As vocational careers began to evolve with technical changes, students lacked the skills needed in the new workplace and were not effectively trained to adapt to the changing environment. The need for a new paradigm in agricultural education was evident, yet the practice of teaching in SBAE remained stagnant, resulting in declining student enrollment and poor student career preparation.

As a result of declining enrollment in agricultural education in the 1980s, and subsequently a larger population becoming further removed from agriculture, the National Research Council sought to identify a new paradigm for agricultural education programs. The 1988 NRC publication, Understanding Agriculture – New Directions for Education, provided recommendations to broaden the scope of agricultural education as an effort to foster a renewed urgency for a society familiar with the workings of agriculture. In Understanding Agriculture – New Directions for Education, the NRC defined the term agricultural literacy as an “understanding of the food and fiber system [that] includes its history and current economics, social, and environmental significance to all Americans” (NRC, 1988, p. 8). The NRC (1988) claimed that the focus of agricultural education must change, stating that agricultural education is more than vocational agriculture. The NRC also recommended that students should receive education about agricultural from kindergarten through twelfth grade, suggesting the integration of agricultural content into existing core courses. Lastly, the NRC claimed that vocational education in agriculture must be continuously adapting to stay current with the evolving field of agriculture. The new paradigm of SBAE established that agricultural education must be comprehensive in coverage, scientific in method, and practical in impact and focus (NRC, 1988). 

Agricultural Education Today

Among the Career and Technical Education (CTE) disciplines established in the United States during the formative years of school-based vocational training, agricultural education has fared considerably well compared to the rest of its counterparts. The number of programs in industrial arts, technology education, and home economics have waned (Lynch, 1996; Volk, 1993) while enrollment in SBAE increased, recruiting an increasingly diverse student population (Brown & Kelsey, 2013; Warner & Washburn, 2009). Like other programs in CTE, SBAE continues to face a shortage of qualified teachers, expressing concern for the sustainability and growth of agricultural education across the country (Boone & Boone, 2009; Eck & Edwards, 2019; Kantrovich, 2010; Moser & McKim, 2020; Myers et al., 2005).

The complete agricultural education program is represented by the three-circle model, consisting of classroom instruction, Supervised Agricultural Experience (SAE), and FFA (Phipps et al., 2008). Each of the three components seen within the model continues to play an integral part of agricultural education across the United States today, despite individual programs reporting varying emphasis on each component (Shoulders & Toland, 2017).

Classroom Instruction

The three-circle model suggests that contextual learning should take place in a laboratory or classroom setting. SBAE has experienced a strong history of experiential learning, stemming from vocational preparation through hands-on and problem-based learning (Parr & Edwards, 2004). Modern instruction in SBAE has become blended in both vocational and academic pursuits. Although active learning strategies have been central to the vision of SBAE, it has been documented that instruction using active learning is currently used far less by teachers than what is recommended (Colclasure et al., 2022; Smith et al., 2015). The emphasis of hands-on learning and skill-based learning in SBAE has provided an opportunity to make science topics applicable and relevant to students, all the while reinforcing academic content (Despain et al., 2016; Phipps et al., 2008). The integration of Science, Technology, Engineering, and Math (STEM) education into agricultural curriculum has become central in modern SBAE (Roberts et al., 2016). Furthermore, the integration of science and math-based learning objectives and learning activities that require higher levels of cognition have shown to increase student learning (Parr et al., 2006; Spindler, 2015).

Student acquisition of content knowledge and skills remain the critical component of education programs. In an era of standard-based testing, measures of student content knowledge are used to provide accountability of student learning. It has been suggested that learning objectives across all disciplines be tied to federal and state learning standards and linked to assessment (Darling-Hammond & Bransford, 2005). For modern SBAE, The National Council for Agricultural Education (NCAE, 2015) developed national learning standards for agricultural education, promoting eight educational pathways that include: (1) Agribusiness Systems; (2) Animal Systems; (3) Biotechnology Systems; (4) Environmental Service Systems; (5) Food Products and Processing; (6) Natural Resource Systems; (7) Plant Systems; and (8) Power, Structural and Technical Systems (The Council, 2015). Many states have also created their own agricultural learning standards and have developed industry certifications for students completing course pathways and passing industry certification exams (Florida Department of Education, 2022; Street et al., 2021). The goal of industry certification is to produce highly qualified graduates who are career ready for specific entry-level positions. Industry certifications have established a more concrete link between industry needs and the content that is taught in some SBAE programs.

SAE

The SAE provides students planned, sequential agricultural instruction that applies classroom topics to student-invested applications that students can understand (Phipps et al., 2008). Through the completion of an SAE, students can gain knowledge in workplace skills, explore different careers in the agricultural industry, and conduct projects that make learning meaningful, inspiring future learning. Despite positive outcomes of the SAE component, many SBAE programs fall short in successfully incorporating SAE programs, which creates a clear deviation from the three-circle model (Lewis et al., 2012a).

Unfortunately, a continuous trend in declining levels of SAE participation has been documented (Lewis et al., 2012b). Despite declining trends in the use of SAE, teachers have generally supported the concept of SAE programs (Osborne, 1988; Retallick, 2010). According to Retallick (2010), the most emergent cause of low student SAE enrollment is teacher difficulty in implementing SAE programs. This phenomenon is not new. Foster (1986) identified factors associated with why SAE programs are not implemented that include: lack of teacher time; lack of facilities (e.g. land labs); lack of student desire; and student demands from other school activities. Adding to these factors, student demographics in SBAE have changed considerably, causing perceived opportunities for quality SAEs to decline (Phipps et al., 2008). A lack of comprehensive preservice teacher training in SAE implementation may also contribute to declining SAEs. In a study on perceived teacher self-efficacy, Wolf (2011) found that novice teachers had lower self-efficacy scores for SAE domains compared to domains for both classroom instruction and FFA. Rubenstein et al. (2016), found that engaged teachers were a primary indicator of students developing and implementing successful SAE programs. Programs that fully embrace the SAE as part of the three-circle model typically require every student to conduct an SAE (Rubenstein & Thoron, 2015) and have strong administrative support (Rayfield & Wilson, 2009).

FFA

The remaining component of the three-circle model is student participation in FFA. FFA provides students with opportunities for personal growth, career exploration, and leadership at local, state, and national levels. Recent FFA membership has become more diverse, consisting of student membership from all 50 states, Puerto Rico, and the U.S. Virgin Islands, which account for a record number of over 850,000 student members (National FFA Organization, 2022). FFA members are provided with opportunities to apply what they have learned in the classroom through competitions that mimic real-world agricultural and career skills. FFA provides students these opportunities through Career Development Events (CDEs). CDEs not only test students’ knowledge about agriculture but also provide students with opportunities to showcase their experience and skills in agriculture (Lundry et al., 2015).

K-8 Agricultural Education

While a foundational level or introductory agriculture course promoting agricultural literacy continues to be a staple in most secondary SBAE programs, middle school agricultural education programs have emerged in some states throughout the country. Although the purpose of SBAE at the middle school level continues to be refined, some states have created guides for middle school agricultural education programs that include basic agricultural literacy and opportunities for students’ agricultural career exploration (Odubanjo, 2018). Further efforts to promote agricultural literacy in public education is evident. In 1981, the USDA established the Agriculture in the Classroom campaign, creating educational programs for K-12 students across the country to learn about agriculture. The Agriculture in the Classroom campaign established agricultural learning standards for K-12 public education that range from basic agricultural knowledge to specific knowledge of the agricultural industry (Spielmaker & Leising, 2013). The Agriculture in the Classroom campaign continues to promote agricultural literacy for K-12 students today.

Preparing an Agriculturally-Literate Society: Teaching “About” Agriculture

The cohesive design and delivery of SBAE across the country has become splintered by varying ideologies of the purpose of agricultural education. The creation of national and state learning standards and industry certification programs that are linked to career-specific pathways have attempted to re-align SBAE to vocational approaches of education. Concurrently, SBAE has seen a large push for increased agricultural literacy and curriculum integration (e.g., STEM) in the last decade, further expanding the mission of agricultural education beyond career readiness. The purpose of agricultural education seems to be split between preparing an agriculturally-literate society and preparing students for careers in agriculture.

The importance of agricultural literacy has been well-noted in the literature. Pope (1990) expressed that agricultural literacy is fundamental to a society that lacks direct connection to production agriculture, so that well informed individuals can make educated decision regarding agriculture. Igo and Frick (1999) claimed that an agriculturally-literate society is needed if the agricultural industry in the United States is to remain successful. Furthermore, Kovar and Ball (2013) suggested that agricultural literacy is imperative to maintain a sustainable and viable agricultural system that is capable to feed a growing global population.

Preparing a Workforce in Modern Agriculture: Teaching “In” Agriculture

CTE has provided a necessary link between workforce readiness, commercial industry, and public education (McNamara, 2009). SBAE, as part of the umbrella of CTE programming, has had an early history rooted within the sole purpose of preparing students for vocational careers within production agriculture (NRC, 1988). Curricula within vocational programs were designed to meet the needs of industry-related employers. From the 1920s to the mid-1980s, curriculum within SBAE was designed with the purpose to train students to become farmers (NRC, 1988). As production agriculture changed over time, SBAE curricula partially developed to reflect such changes, teaching industrial methods of technical agriculture.

Despite efforts across CTE programs to establish a career-ready workforce, a recent trend indicating deficiencies of the number of graduating students who have the knowledge and skills required by industry has led to a nation-wide skills gap (Whittaker & Williams, 2016). Evidence of the skills gap has sparked a recent return to the investment of CTE programs in the United States (Stringfield & Stone, 2017). Governing agencies within CTE have promoted the use of career pathways and industry certifications within secondary education to advance students’ acquisition of skills and successful transition from high school into the workplace (Stringfield & Stone, 2017). In an analysis of U.S. job growth after the Great Recession of 2008, Carnevale et al. (2013) found that the new jobs created after the recession look far different than the jobs that were lost.

Implications for School-based Agricultural Education

The question if agricultural education curricula should be focused in or about agriculture has been debated over the last several decades. Proponents who support either side of the debate have identified valid arguments and have advocated for the advancement of agricultural educational to align with their belief of the purpose of agricultural education. It is hard to disagree with the notion that agricultural education should provide students with a foundational understanding of the production of food, fiber, and natural resources. Increasing the agricultural literacy of our society has never been of greater importance, as today’s youth have become more disconnected from the farm (USDA, 2014; Vallera & Bodzin, 2016). However, if the primary goal of agricultural education lies within improving students’ agricultural literacy, we must question if we are drifting too far from the historical roots of agricultural education, where the initial purpose was to prepare the next generation of agricultural workers. If SBAE becomes too centered in teaching about agriculture, we must ask ourselves if we are still considered a member of the CTE community.

Furthermore, focusing on anything less than preparing students for careers could contribute to an increasing skills gap in the United States. There is clearly a need for agricultural education to be positioned to teach about agriculture and to teach in agriculture. In order to achieve both of these tasks, the structure of agricultural education must be critically examined and evaluated, and alternative structures of agricultural education should be considered. As can be seen in figure one, a conceptual framework is proposed that illustrates an example structure for K-12 public education that allows for the effective delivery of agricultural education programs to teach students about and in agriculture.

The conceptual framework illustrates that teaching about agriculture should occur in grades K-9, with agricultural curriculum integration into core curriculum high school courses. Once students obtain a basic understanding of agricultural concepts they can elect to enter a pathway for career readiness identified by state boards of curriculum and individual schools.

Figure 1
A conceptual framework for teaching “in” and “about” agriculture in K-12 education.

Kindergarten – 5th Grade

The first stage in a holistic effort to improve the agricultural literacy among the public is to teach agricultural topics in grades K-5. The importance of agricultural education programs in grades K-5 should not be undervalued, as this formative stage of cognitive development is central to establish a life-long appreciation and interest in agriculture. Programs such as the Agriculture in the Classroom campaign should continue to strive to make sure that every child is exposed to educational applications that engages them in agricultural topics. Opportunities for children to be exposed to agriculture should extend beyond the classroom, increasing the exposure of children to school gardens and working farms. Every child should know where food comes from at the most basic level, and public education at lower levels and in every community should be the primary mechanism to ensure this occurs.

6th Grade – 8th Grade

Federal and state efforts requiring a basic agricultural education course in public education is well-warranted. This framework proposes that students in grades sixth through eighth should be required to enroll in at least one agricultural education course. Courses at this level should focus on teaching students about agriculture on a foundational level. Coursework should be oriented toward agricultural literacy, consisting of subject matter that is rich in consumer knowledge that explores food production from field to fork. Ideally, students will take more than one agricultural education course at the middle school level. However, the teacher shortage in agricultural education (Camp et al., 2002; Kantrovich, 2010; Roberts & Dyer, 2004), and the current status of agricultural education, which is focused at the high school level, creates difficulties in providing agricultural education to every middle school student. Innovative solutions, such as additional middle school agricultural endorsement programs for core curriculum teachers, and offering online agriculture courses, could provide every middle school student with at least one agricultural course. Agricultural courses at the middle school level should focus on basic agricultural content knowledge and literacy.

9th Grade

This framework also proposes that every student should take an advanced introduction to agriculture course during their first year of high school. This course will expand upon the required middle school agriculture course by exposing students to complex agricultural issues that emphasize students’ use of higher order thinking. However, the focus of the advanced introduction to agriculture course will still be centered in teaching about agriculture and will allow students to explore agricultural careers.

9th-12th Grade

Contrary to the integration of core subjects into agriculture courses, this framework highlights the need to integrate agricultural topics into core classes. It is believed that this method will expand agricultural literacy for students who elect to not go into agricultural career pathways. Furthermore, the integration of real-life applications is needed in core curriculum. Stakeholders of agriculture and key organizations in agricultural education should design lessons that have an agricultural context for core curriculum classes that teachers can use to supplement their current lessons.

10th-12th Grade

In order to prepare a specialized and highly-qualified agricultural workforce for the 21st century, this framework proposes that programs should strategically implement a series of career pathway courses that are uniquely tailored to the occupational needs of each state. Such courses should be designed to allow students to obtain the skills needed in localized agricultural careers. The implementation of career certifications in SBAE, which are currently found in some states, provide a necessary link between industry and education. Furthermore, the design of career preparation courses should expand beyond the immediate skill sets needed in the industry and should promote students’ social, critical thinking, problem solving, and communication skills that are needed in the 21st century workforce. 

Conclusion

The development of agricultural education was first established to prepare individuals for the skills they needed to work on a farm. Following the industrial revolution, federal acts expanded vocational education in secondary schools and post-secondary institutions. The focus in trade-based learning was evident in agricultural education until the reinvention of agricultural education during the 1990s. Agricultural education expanded its mission to teach beyond agricultural trades, emphasizing agricultural knowledge, as opposed to specific career skills. The new paradigm of agricultural education may have been essential for the growth of SBAE. However, the purpose of SBAE to teach about agriculture has led to deficiencies in students’ career preparation while also not fully reaching its potential to educate society about agriculture.

The conceptual framework provided in this paper was developed to offer a solution for agricultural education to be better positioned to teach both about and in agriculture. The framework expands upon existing efforts for agricultural education to reach K-8 students. An expansion of agricultural education at the middle school level is necessary to fully expose students about agriculture. An additional course at the 9th grade level, which exposes students to higher level thinking about agriculture, is necessary. These courses along with the integration of agricultural contexts into core curriculum will aim to decrease the public’s knowledge gap of agriculture. Courses beyond an advanced introductory course will focus on specific agricultural careers and will exist for the purpose of providing students with the advanced skills they need in specific agricultural industries. The authors of the proposed framework understand the complexities associated with the redevelopment of the structure of agricultural education programs; however, in order for agricultural education to simultaneously provide solutions to both career readiness and agricultural literacy, the structure and purpose of agricultural education at each level should be discussed and refined on a national level.

The implementation of the provided conceptual framework would have dramatic implications for SBAE. An enormous increase in the number of students enrolled in SBAE courses would be seen. The expansion of middle school agricultural education programs would educate all students about agriculture, putting less pressure for high school agriculture courses to teach both about and in agriculture. Furthermore, it would be expected that agricultural literacy would increase in society, resulting in a new generation that appreciates and understands the basic components of food production. A renewed focus on advanced career preparation for specific career pathways could potentially reduce the number of students being taught career-specific agricultural skills. However, students completing specific career pathways that are tailored to the demands of industry, would be adequately prepared to enter the workforce or continue advanced, postsecondary training in a specific field. The investment in this educational design could contribute to closing the large skills gap identified in industry. Agricultural education has advanced in many ways to become a model for CTE. Despite its many successes over the last century, the current structure of agricultural education is beginning to experience unintended strain from pressures asking agricultural education to do too much with its existing structure. The current structure of SBAE is not appropriately designed to teach both about and in agriculture, where both purposes are given the attention they need. The proposed conceptual framework included in this paper is one of many potential designs to offer alternatives for the structure of agricultural education to meet challenges that are currently being faced in agriculture. 

References

Ajibola, O. R. (2019). Trend of globalization and its impact on agriculture: Forestry share. International Journal of Agriculture, Forestry, and Fisheries, 7(1), 5-11. http://www.openscienceonline.com/journal/archive2?journalId=706&paperId=5284

Barrick, R. K. (1989). Agricultural education: Building upon our roots. Journal of Agricultural Education, 30(4), 24-29. https://doi.org/10.5032/jae.1989.04024

Boone, H. N., & Boone, D. A. (2009). An assessment of problems faced by high school agricultural education teachers. Journal of Agricultural Education, 50(1), 21-32. https://doi.org/10.5032/jae.2009.01021

Brown, N. R., & Kelsey, K. D. (2013). Sidewalks and city streets: A model for vibrant agricultural education in urban American communities. Journal of Agricultural Education, 54(2), 57-69. https://doi.org/10.5032/jae.2013.02057

Camp, W. G., Broyles, T., & Skelton, N. S. (2002). A national study of the supply and demand for teachers of agricultural education in 1991-2001. Virginia Tech, College of Agriculture and Life Science.

Carnevale, A. P., Smith, N., & Strohl. J. (2013). Recovery: Job growth and education requirements through 2020. Georgetown University Center on Education and the Workforce. https://cew.georgetown.edu/cew-reports/recovery-job-growth-and-education-requirements-through-2020/

Colclasure, B. C., Thoron, A. C., & Dempsey, J. (2022). Factors relating to agriculture teachers’ perceived use of instructional methods. Advancements in Agricultural Development, 3(4), 1-16. https://doi.org/10.37433/aad.v3i4.235

Conkin, P. (2009). A revolution down on the farm: The transformation of American agriculture since 1929. University Press of Kentucky.

Darling-Hammond, L. & Bransford, J. (2005). Preparing teachers for a changing world: What teachers should learn and be able to do. Jossey-Bass.

Despain, D., North, T., Warnick, B. K., & Baggaley, J. (2016). Biology in the agriculture classroom: A descriptive comparative study. Journal of Agricultural Education, 57(1), 194-210. https://doi.org/10.5032/jae.2016.01194

Ding, X., & Qian, Y. (2016). Globalization, employment and agriculture: A review of the eleventh forum of the world association for political economy. World Review of Political Economy, 7(4), 541-555. https://doi.org/10.13169/worlrevipoliecon.7.4.0541

Eck, C. J., & Edwards, M. C. (2019). Teacher shortage in school-based, agricultural education (SBAE): A historical review. Journal of Agricultural Education, 60(4), 223-239. https://doi.org/10.5032/jae.2019.04223

Federal Board of Vocational Education (1917). Statement of policies. (Bulletin No. 1). Government Printing Office.

Florida Department of Education (2022). Curriculum frameworks. https://www.fldoe.org/academics/career-adult-edu/career-tech-edu/curriculum-frameworks/2022-23-frameworks/agriculture-food-natural-resources.stml

Food and Agriculture Organization of the United Nations. (2015). The state of food insecurity in the world. http://www.fao.org/3/a-i4646e.pdf

Food and Agriculture Organization of the United Nations. (2017). The future of food and agriculture: Trends and challenges. http://www.fao.org/3/a-i6583e.pdf

Foster, R. M. (1986). Factors limiting vocational agriculture student participation in supervised occupational experience programs in Nebraska. Journal of the American Association of Teacher Educators in Agriculture, 27(4), 45-50.

Hayward, G. C., & Benson, C. S. (1993). Vocational-technical education: Major reforms and debates 1917-present. United States Department of Education Office of Vocational and Adult Education 1993 Report. https://files.eric.ed.gov/fulltext/ED369959.pdf

Igo, C., & Frick, M. (1999). A case study assessment of standard benchmarks for implementing food and fiber systems literacy. Proceedings of the 18th Annual Western Region Agricultural Education Research Meeting. Corpus Christi, TX.

Kantrovich, A. J. (2010). The 36th volume of a national study of the supply and demand for teachers of agricultural education from 2006-2009. American Association of Agricultural Educators, Michigan State University.

Kovar, K. A., & Ball, A. L. (2013). Two decades of agricultural literacy research: A synthesis of the literature. Journal of Agricultural Education, 54(1), 167-178. https://doi.org/10.5032/jae.2013.01167

Lewis, L. J., Rayfield, J., & Moore, L. L. (2012a). An assessment of students’ perceptions toward factors influencing supervised agricultural experience participation. Journal of Agricultural Education, 53(4), 55-69. https://doi.org/10.5032/jae.2012.04055

Lewis, L. J., Rayfield, J., & Moore, L. L. (2012b). Supervised agricultural experience: An examination of student knowledge and participation. Journal of Agricultural Education, 53(4), 70-84. https://doi.org/10.5032/jae.2012.04070

Little, A. (2019). The fate of food: What we’ll eat in a bigger, hotter, smarter world. Penguin Random House, LLC

Lynch, R. L. (1996). In search of vocational and technical teacher education. Journal of Career and Technical Education, 13(1), 5-16. https://doi.org/10.21061/jcte.v13i1.508

Lundry, J., Ramsey, J. W., Edwards, M. C., & Robinson, S. (2015). Benefits of career development events as perceived by school-based, agricultural education teachers. Journal of Agricultural Education, 56(1), 43-57. https://doi.org/10.5032/jae.2015.01043

McNamara, B. R. (2009). The skill gap: Will the future workplace become an abyss. Techniques: Connecting Education and Careers, 84(5), 24-27. https://eric.ed.gov/?id=EJ840446

Moore, G. E., & Gaspard, C. (1987). The quadrumvirate of vocational education. Journal of Technical Education, 4(1).

Moser, E. M., & McKim, A. J. (2020). Teacher retention: A relational perspective. Journal of Agricultural Education, 61(2), 263-275. https://doi.org/10.5032/jae.2020.02263

Myers, B. E., Dyer, J. E., & Washburn, S. G. (2005). Problems facing beginning agriculture teachers. Journal of Agricultural Education, 46(3), 47-55. https://doi.org/10.5032/jae.2005.03047

National Council for Agricultural Education (NCAE). (2015). Agriculture, Food and Natural Resources (AFNR) Career Cluster Content Standards, 1-142. https://thecouncil.ffa.org/afnr/

National FFA Organization. (2015). Our membership. https://www.ffa.org/our-membership/

National Research Council. (1988). Understanding agriculture: New directions for education. The National Academies Press.

National Research Council. (2009a). A new biology for the 21 century. The National Academies Press.

National Research Council. (2009b). Transforming agricultural education for a changing world. The National Academies Press. https://doi.org/10.17226/12602

Odubanjo, A. (2018). Perceptions of middle, high school and community college agricultural teachers in Iowa regarding agricultural awareness concepts and activities in the middle school curriculum: Grades 7-9 [Dissertation, Iowa State University]. Iowa State University Digital Repository. https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=7435&context=etd

Osborne, E. W. (1988). Planning and supervision strategies for SOE programs in agriculture. Journal of American Association of Teacher Educators in Agriculture, 29(4), 49-56.

Parr, B. A., & Edwards, M. C. (2004). Inquiry-based instruction in secondary agricultural education: Problem-solving – an old friend revisited. Journal of Agricultural Education, 45(4), 106-117. https://doi.org/10.5032/jae.2004.04106

Parr, B. A., Edwards, M. C., & Leising, J. G. (2006). Effects of a math-enhanced curriculum and instructional approach on the mathematics achievement of agricultural power and technology students: An experimental study. Journal of Agricultural Education, 47(3), 81-93. https://doi.org/10.5032/jae.2006.03081

Phipps, L. J., Osborne, E. W., Dyer, J. E., & Ball, A. (2008). Handbook of agricultural education in public schools (6th ed.). Thomson Delmar Learning.

Pope, J. (1990). Agricultural literacy: A basic American need: The Agricultural Education Magazine, 62(9), 8.

Prentice Hall Documents Library (1998). Smith-Hughes Act of 1917. https://wps.prenhall.com/wps/media/objects/434/445252/DocumentsLibrary/docs/smith917.htm

Rayfield, J., & Wilson, E. (2009). Exploring principals’ perceptions of supervised agricultural experience. Journal of Agricultural Education, 50(1) 70-80. https://doi.org/10.5032/jae.2009.01070

Retallick, M. S. (2010). Implementation of supervised agricultural experience programs: The agriculture teachers’ perspective. Journal of Agricultural Education, 51(4), 59-70. https://doi.org/10.5032/jae.2010.04059

Roberts, T. G., & Dyer, J. E. (2004). Inservice needs of traditionally and alternatively certified agriculture teachers. Journal of Agricultural Education, 45(4), 57-70. https://doi.org/10.5032/jae.2004.04057

Roberts, T. G., Harder, A., & Brashears, M. T. (eds.) (2016). American Association for Agricultural Education national research agenda: 2016-2020. Gainesville, FL: Department of Agricultural Education and Communication.

Rubenstein, E. D., & Thoron, A. C. (2015). Supervised agricultural experience programs: An examination of committed teachers and student-centered programs. Journal of Agricultural Education, 56(4), 75-89. https://doi.org/10.5032/jae.2015.04075

Rubenstein, E. D., Thoron, A. C., Colclasure, B. C., & Gordon, J. A. (2016). Supervised agricultural experience programs: An examination of the development and implementation of urban programs. Journal of Agricultural Education, 57(4), 218-234. https://doi.org/10.5032/jae.2016.04217

Salin, S. (2018). The sustained impacts of an agriculture-based youth development program on alumni’s connection to the environment, food, community and self [Master’s thesis, The Evergreen State College]. The Evergreen State College Archives. https://archives.evergreen.edu/masterstheses/Accession86-10MES/Salin_Thesis_2018.pdf

Shoulders, C. W., & Toland, H. (2017). Millennial and non-millennial agriculture teachers’ current and ideal emphasis on the three components of the agricultural education program. Journal of Agricultural Education, 58(1), 85-101. https://doi.org/10.5032/jae.2017.01085

Smith, K. L., Rayfield, J., & McKim, B. R. (2015). Effective practices in STEM integration: Describing teacher perceptions and instructional method use. Journal of Agricultural Education, 56(4), 182-201. https://doi.org/10.5032/jae.2015.04183

Spielmaker, D. M., & Leising, J. G. (2013). National agricultural literacy outcomes. Utah State University, School of Applied Sciences & Technology. Logan, UT. http://agclassroom.org/teacher/matrix

Spindler, M. (2015). Science integrating learning objectives: A cooperative learning group process. Journal of Agricultural Education, 56(1), 203-220. https://doi.org/10.5032/jae.2015.01203

Street, A., Stripling, C., Ricketts, J., Conner, N., & Boyer, C. (2021). Identifying Tennessee school-based agricultural education student growth and program accountability metrics. Advancements in Agricultural Development, 2(2), 86-96. https://doi.org/10.37433/aad.v2i2.91

Stringfield, S., & Stone, J. R. (2017). The labor market imperative for CTE: Changes and challenges for the 21st century. Peabody Journal of Education, 92(2), 166-179. https://doi.org/10.1080/0161956X.2017.1302209

United States Department of Agriculture. (2014). Census highlights: Farm demographics. https://www.nass.usda.gov/Publications/Highlights/2014/Farm_Demographics/index.php

United States Farmers and Ranchers Alliance. (2011). Nationwide surveys reveal disconnect between Americans and their food. Cision PR Newswire. https://www.prnewswire.com/news-releases/nationwide-surveys-reveal-disconnect-between-americans-and-their-food-130336143.html

United States Farmers and Ranchers Alliance. (2012). Americans say food production headed in right direction, widespread misperceptions remain. Cision PR Newswire. https://www.prnewswire.com/news-releases/americans-say-food-production-headed-in-right-direction-widespread-misperceptions-remain-179465971.html

Vallera, F. L., & Bodzin, A. M. (2016). Knowledge, skills, or attitudes/beliefs: The context of agricultural literacy in upper-elementary science curricula. Journal of Agricultural Education, 57(4), 101-117. https://doi.org/10.5032/jae.2016.04101

Volk, K. S. (1993). Enrollment trends in industrial arts/technology teacher education from 1970-1990. Journal of Technology Education, 4(2), 46-59. https://doi.org/10.21061/jte.v4i2.a.4

Warner, W. J., & Washburn, S. G. (2009). Issues facing urban agriscience teachers: A Delphi study. Journal of Agricultural Education, 50(1), 105-115. https://doi.org/10.5032/jae.2009.01105

Wittaker, J. G., & Williams, G. (2016). Skills gap – a strategy for increasing knowledge worker supply and demand. Journal of Business, 1(4), 13-24. https://doi.org/10.18533/job.v1i4.42

Wolf, K. J. (2011). Agricultural education perceived teacher self-efficacy: A descriptive study of beginning agricultural education teachers. Journal of Agricultural Education, 52(2), 163-176. https://doi.org/10.5032/jae.2011.02163

Identifying the Teaching Effectiveness of School-Based Agricultural Education Teachers Who Aim to Increase their Human Capital

Christopher J. Eck, Oklahoma State University, chris.eck@okstate.edu

PDF Available

Abstract

Teaching effectiveness is an elusive, difficult to gauge concept, especially in career and technical education. This exploratory study was undergirded by the human capital theory and the effective teaching model for SBAE teachers. The purpose of this study was to identify the overall effectiveness of SBAE teachers aiming to improve their human capital by attending professional development at the 2020 NAAE conference. Composite effectiveness scores on the effective teaching instrument for school-based agricultural education teachers (ETI-SBAE) ranged from 59 to 98, out of 104, with a mean score of 81.54 overall. Work-life balance was found to be the component of greatest concern, followed by SAE supervision. Female SBAE teachers were found to be more effective than their male counterparts in this self-reported study. Determining effectiveness using the ETI-SBAE allows teachers to reflect upon their current human capital, ultimately guiding professional development opportunities to improve their effectiveness. SBAE stakeholders responsible for developing professional development workshops should consider the needs of their target audience and be purposeful in the offerings provided, as needs of SBAE teachers vary across a wide spectrum of personal and professional characteristics.

Introduction/Theoretical Framework

Teaching effectiveness has often been considered an elusive concept (Stronge et al., 2011), as it has multiple definitions and evaluation metrics (Farrell, 2015), although, studies (Kane & Staiger, 2008; Stronge et al., 2011) have found a link between teaching effectiveness and students’ success. As with career and technical education (CTE) at large, considering the effectiveness of school-based agricultural education (SBAE) teachers becomes an even more daunting task (Eck et al., 2019). Evaluating SBAE teachers differs from those within core subject areas, as SBAE teachers have unique workloads and expectations (Roberts & Dyer, 2004). The expectations of an SBAE teacher are often designed based on the National FFA Organization’s (2015) three-component model of agricultural education, (i.e., classroom and laboratory instruction, FFA advisement, and supervised agricultural experience (SAE) supervision). Figure 1 outlines the three-component model along with integral details.

Figure 1
The Three-Component Model of Agricultural Education (National FFA Organization, 2015)

The components outside of classroom and laboratory instruction (i.e., SAE and FFA) are considered intracurricular, as they are a comprehensive part of a complete SBAE program (National FFA Organization, 2015). Although these components are intracurricular, the time SBAE teachers must commit to overseeing these tasks is time consuming and often daunting for newer teachers (Torres et al., 2008). Many of these additional tasks go unnoticed by supervisors and administrators even though teachers often struggle preparing for class (Boone & Boone, 2007) and balancing the additional workload (Boone & Boone 2009). This workload and the increased community expectation placed on SBAE teachers often leads to the concern of work-life balance (Clemons et al., 2021; Edwards & Briers, 1999; Murray et al., 2011; Traini et al., 2020; Sorensen et al., 2016). Additionally, work-life balance has been identified as an integral component of an effective SBAE teacher (Eck et al., 2020). But finding this balance can be an overwhelming task considering the extra duties and responsibilities placed on SBAE teachers (Terry & Briers, 2010). Regardless of the subject area many can agree that “teachers make a difference” (Wright et al., 1997, p. 57), which leads to the need for support structures for teachers.

One critical way that teachers are supported is through professional development opportunities (Desimone, 2011). Unfortunately, professional development is often broad and not developed based on teacher’s needs, leading to little or no benefit to the teachers participating (National Research Council, 2000). Research within SBAE often focuses on the needs of teachers but professional development is rarely designed to meet those needs (Easterly & Myers, 2019). Therefore, it is essential that teachers’ needs are not only evaluated but the opportunity to address those needs through purposeful professional development is explored.

This study aimed to address the overarching concern related to professional development and the alignment of SBAE teachers’ needs by evaluating their teaching-specific human capital during a professional development workshop. Thus, this study was framed by the conceptual model for effective teaching in SBAE (Eck et al., 2020). The model was undergirded by the human capital theory (HCT), as HCT addresses an individual’s experiences, education, skills, and training (Becker, 1964; Little, 2003; Schultz, 1971; Smith, 2010; Smylie, 1996) specific to their career (Heckman, 2000). As the educational landscape continues to change, it becomes increasingly important to assess and update career specific human capital (Spenner, 1985).

To help address the specific concerns related to SBAE teaching, Eck et al. (2020) developed and validated the effective teaching instrument for school-based agricultural education teachers (ETI-SBAE) in response to the growing interest in developing comprehensive evaluation systems for education (Darling-Hammond, 2010), specifically those unique to SBAE (Eck et al., 2019; Roberts & Dyer, 2004). To further support the professional development of SBAE teachers, a conceptual model was established to connect the primary components of SBAE teacher human capital development and effective teaching in a complete SBAE program. Figure 2 depicts the effective teaching model for SBAE teachers (Eck et al., 2020), which supports the ETI-SBAE by grounding the instrument in the human capital theory.  

Figure 2
The Effective Teaching Model for SBAE Teachers

Since human capital focuses on the education, skills, experiences, and training (Little, 2003; Schultz, 1971; Smith, 2010; Smylie, 1996) specifically related to one’s career (Becker, 1964), the model is encompassed by the development of human capital. The effective teaching model (see Figure 2) aligns the six components of effective SBAE teachers from the ETI-SBAE along with personal, professional, and environmental factors, all of which are necessary elements of human capital for SBAE teachers (Eck et al., 2020). Although the ETI-SBAE exists, little research has been conducted related to the evaluation and growth of SBAE teachers seeking to increase their human capital through professional development opportunities. The ETI-SBAE and the accompanying conceptual model were established to help in-service SBAE teachers conceptualize their personal strengths and weaknesses as they relate to effective teaching in a complete SBAE program (Eck et al., 2020). Therefore, this study aimed to determine the self-perceived effectiveness of SBAE teachers related to the effective teaching model, who were participating in the 2020 National Association of Agricultural Educators (NAAE) annual conference who were taking part in professional development opportunities. The workshop provided career specific professional development for SBAE teacher participants, which served as a training (Schultz, 1971) aimed at increasing career specific human capital (Becker, 1964).

Purpose and Objectives

The purpose of this study was to identify the overall effectiveness of SBAE teachers aiming to improve their human capital by attending professional development at the 2020 NAAE conference. Two research objectives guided the study: (1) Determine the self-perceived effectiveness of SBAE teachers attending professional development at the 2020 NAAE Conference; and (2) Compare the effectiveness of SBAE teachers based on personal and professional characteristics.

Methods and Procedures

This non-experimental study implemented an exploratory survey research design (Privitera, 2020) during a professional development workshop at the 2020 NAAE Virtual Conference. The population of interest included SBAE teachers nationwide, but an accessible population (Privitera, 2020) was surveyed that participated in the virtual workshop titled, Be Purposeful About Your Professional Development: How to Increase Your Teaching Effectiveness (n = 32), during the conference. During the virtual presentation, teachers were asked to complete a survey instrument to help them self-evaluate their overall effectiveness. Out of the 32 participants, 28 (87.5%) completed the instrument.  

The ETI-SBAE was the instrument used during the workshop as it was deemed a valid and reliable instrument to self-assess SBAE teacher effectiveness by Eck et al. (2020), with an acceptable Cronbach’s alpha of 0.87 (Nunnally, 1978). The instrument included 26-items (see Table 1) spanning six components (i.e., Intracurricular Engagement, Personal Dispositions, Appreciation for Diversity and Inclusion, Pedagogical Preparedness, Work-Life Balance, and Professionalism).

Table 1
Effective Teaching Components and Item Descriptions (26 items)
Component Title Item Corresponding Item Description
     
1. Intracurricular Engagement IE_1 I instruct students through FFA.
  IE_2 I advise the FFA officers.
  IE_3 I advise the FFA chapter.
  IE_4 I facilitate record keeping for degrees and
     awards.
  IE_5 I am passionate about FFA.
  IE_6 I instruct students through SAEs.
  IE_7 I use the complete agricultural education 3-
     component model as a guide to  
     programmatic decisions.
     
2. Personal Dispositions PD_1 I am trustworthy.
  PD_2 I am responsible.
  PD_3 I am dependable.
  PD_4 I am honest.
  PD_5 I show integrity.
  PD_6 I am a hard worker.
     
3. Appreciation for Diversity
        and Inclusion
 AD_1 I value students regardless of economic status.
  AD_2 I value students of all ethnic/racial groups.
  AD_3 I value students regardless of sex.
  AD_4 I care about all students.
  AD_5 I understand there is not an award for all
     students, but that does not mean they are not
     valuable.
     
4. Pedagogical Preparedness PP_1 I demonstrate classroom management.
  PP_2 I demonstrate sound educational practices.
  PP_3 I am prepared for every class.
     
5. Work-Life Balance B_1 I have the ability to say no.
  B_2 I lead a balanced life.
  B_3 I am never afraid to ask for help.
     
6. Professionalism P_1 I have patience.
  P_2 I show empathy.
     

In addition to the 26-item instrument, five questions were asked related to personal and professional characteristics (i.e., age, gender, ethnicity, certification pathway, and number of years teaching SBAE).

Workshop participants rated each of the 26-items on a 4-point, Likert-type scale ranging from 1 to 4 (i.e., 1 = very weak; 2 = weak; 3 = strong; 4 = very strong) based on their personal assessment of strengths and weaknesses. A composite effectiveness score was calculated based on the recommendations of Eck et al. (2020) to assess overall teacher effectiveness based on a sum of the responses to the 26-items. The summative scores were equally weighted across the 26-items to provide optimal estimates according to McDonald (1997). The composite scores were calculated using Microsoft Excel®, with a possible range of 26 (very weak) to 104 (very strong). Composite effectiveness ranges were provided to participants during the workshop as follows: weak = 26 to 46; somewhat weak = 47 to 67; strong = 68 to 88; and very strong = 89 to 104.

Data were analyzed using SPSS Version 26 and included descriptive and inferential statistics.  Specifically, research objective one used descriptive statistics to report mean and standard deviation using SPSS, while also implementing Microsoft Excel to calculate composite effectiveness scores. The composite effectiveness scores were then used in research objective two as the dependent variable to compare against the five independent variables or personal and professional characteristics (i.e., gender, age, ethnicity, certification pathway, and years teaching) using a factorial analysis of variance (ANOVA), per the recommendations of Field (2009). The factorial ANOVA output from SPSS was analyzed to identify interactions and potential main effects of the data (Field, 2014). To further explain the effect, an effect size was calculated for the factorial ANOVA as partial eta squared (n2). The resulting effect size (n2 = 0.44) was considered a large effect (n2 > .25) according to Privitera (2020).

SBAE teachers participating in the NAAE workshop ranged from 24 to 53 years of age, with 78.6% being female (see Table 2). Twenty-one of the teachers (75.0%) were traditionally certified through either a bachelor’s or master’s agricultural education degree program with student teaching and ranged from first year teachers to those with 28 years of experience (see Table 2). Table 2 outlines the personal and professional characteristics of all SBAE teachers participating in the virtual workshop who completed the ETI-SBAE during the 2020 NAAE Virtual Conference. 

Table 2
Personal and Professional Characteristics of Participants (n = 28)
Characteristic  n % 
       
GenderMale 5 17.9 
 Female 22 78.6 
 Prefer to not respond 1 3.6 
       
Age21 to 29 4 14.2 
 30 to 39 8 28.6 
 40 to 49 8 28.6 
 50 to 59 3 10.7 
 Prefer to not respond 5 17.9 
       
Certification PathwayAgEd BS 11 39.3 
 AgEd MS 10 35.7 
 Alternatively Certified 3 10.7 
 Emergency Certified 1 3.6 
 Not Certified 1 3.6 
 Prefer to not respond 2 7.1 
       
EthnicityWhite 22 78.6 
 Black or African American 1 3.6 
 Native Hawaiian or Pacific
     Islander
 1 3.6 
 Other 2 7.1 
 Prefer to not respond 2 7.1 
       
Years Teaching SBAEa1 1 3.6 
 2 0 0.0 
 3 1 3.6 
 4 1 3.6 
 5 3 10.7 
 6 to 10 6 21.4 
 11 to 15 7 25.0` 
 16 to 20 5 17.9 
 21 to 25 2 7.1 
 26 to 30 1 3.6 
 No Response 1 3.6 
       

Note. aYears of teaching experience was aggregated based on participant responses.

The limitations of this study should be considered, as participation was limited to those who registered for and attended the virtual workshop at the 2020 NAAE Conference titled, Be Purposeful About Your Professional Development: How to Increase Your Teaching Effectiveness. and were willing to complete the ETI-SBAE instrument during the virtual workshop. The participants were seeking professional development; therefore, the findings are limited to in-service SBAE teachers who are interested in professional development opportunities.

Findings

Findings for Research Objective One: Determine the self-perceived effectiveness of SBAE teachers attending professional development at the 2020 NAAE Conference

This study resulted in responses from 28 SBAE teachers with composite effectiveness scores ranging from 59 (weak) to 98 (very strong), out of a total of 104, with a mean of 81.54. To further understand these composite scores, Table 3 outlines the means and standard deviations of each of the 26-items on the ETI-SBAE.

Table 3
ETI-SBAE Items with Means and Standard Deviations (n = 28)
Corresponding Item Description M SD
     
I am a hard worker. 4.00 .00
I am trustworthy. 3.96 .19
I am dependable. 3.93 .27
I am honest. 3.93 .27
I show integrity. 3.93 .27
I am responsible. 3.92 .27
I value students regardless of economic status. 3.89 .32
I value students of all ethnic/racial groups. 3.85 .36
I value students regardless of sex. 3.85 .36
I care about all students. 3.81 .40
I understand there is not an award for all students, but that does not mean they are not valuable. 3.81 .49
I am passionate about FFA. 3.74 .71
I demonstrate sound educational practices. 3.33 .48
I show empathy. 3.33 .68
I have patience. 3.32 .67
I advise the FFA chapter. 3.31 .62
I advise the FFA officers. 3.27 .83
I use the complete agricultural education 3-component model as a guide to programmatic decisions. 3.27 .72
I demonstrate classroom management. 3.26 .59
I instruct students through FFA. 3.23 .71
Corresponding Item Description M SD
I am prepared for every class. 2.89 .64
I instruct students through SAEs. 2.88 .71
I facilitate record keeping for degrees and awards. 2.85 .93
I lead a balanced life. 2.41 .64
I am never afraid to ask for help. 2.37 .88
I have the ability to say no. 2.33 .68
     

Note. 1 = very weak, 2 = somewhat weak, 3 = somewhat strong, and 4 = very strong

As shown in Table 3, the top six items based on means (ranging from 3.92 to 4.00) were all related to personal dispositions of the SBAE teachers (i.e., I am a hard worker, I am trustworthy, I am dependable, I am honest, I show integrity, and I am responsible). The next five items all correspond with an SBAE teachers’ appreciation for diversity and inclusion (i.e., I value students regardless of economic status, I value students of all ethnic/racial groups, I value students regardless of sex, I care about all students, and I understand there is not an award for all students, but that does not mean they are not valuable), ranging in means from 3.81 to 3.85. The component related to work-life balance (i.e., I lead a balanced life, I am never afraid to ask for help, and I have the ability to say no) resulted in the lowest three mean scores, ranging from 2.33 to 2.41. Professionalism corresponds to two items; I have patience and I show empathy which resulted in mean scores of 3.32 and 3.33 respectively. Pedagogical preparedness is represented by three items (i.e., I demonstrate classroom management, I demonstrate sound educational practices, and I am prepared for every class), which ranged from a low of 2.89 to a high of 3.33. The final, and largest component is intracurricular engagement, which corresponds with seven items (i.e., I instruct students through FFA, I advise the FFA officers, I advise the FFA chapter, I facilitate record keeping for degrees and awards, I am passionate about FFA, I instruct students through SAEs, and I use the complete agricultural education 3-component model as a guide to programmatic decisions) that ranged in mean scores from 2.85 to 3.74.

Findings for Research Objective Two: Compare the Effectiveness of SBAE Teachers Based on Personal and Professional Characteristics

Respondents were asked five questions related to personal and professional characteristics, including their age, gender, ethnicity, certification pathway, and number of years teaching SBAE (see Table 2). These characteristics were then compared against the composite sum effectiveness score for each participant. The maximum possible effectiveness score was 104 points for the 26-item instrument, as identified in the first research objective respondents in this study had effectiveness scores ranging from 59 to 98 points.

Before proceeding with the statical analysis, normality and homogeneity of variance was assessed, with all responses being normally distributed and Levene’s test statistic resulting in a non-statistical significance (p > .05).  With the assumptions being met, a factorial ANOVA was conducted with the composite sum effectiveness score serving as the dependent variable and the five personal and professional characteristics serving as independent variables. The SPSS output resulted in no statistically significant interactions within the factorial ANOVA. Although there were no significant interactions, main effects were analyzed, resulting in a statistically significant main effect for Gender F (17, 10) = 2.91, p < .05. Specifically, women in this study perceived themselves to be more effective (mean score = 88.50) than men (mean score = 83.20). The other for factors were not statistically significant; (1) Age F (17, 10) = 2.03, p > .05; (2) Ethnicity F (15, 10) = 1.60, p > .05; (3) Certification Pathway F (15, 10) = 0.76, p > .05; (4) Number of Years Teaching F (16, 10) = 2.35, p > .05.

Conclusions

SBAE teachers participating in the professional development session at the 2020 NAAE conference perceived themselves to be effective teachers overall according to their responses on the ETI-SBAE with a mean composite effectiveness score of 81.54. This overall composite score falls within the strong category of SBAE teaching effectiveness (i.e., strong = 68 to 88). Twenty of the items resulted in mean scores above 3.2, indicating responses of somewhat strong or very strong on the instrument. The remaining six items ranged in mean scores from a high of 2.89 (I am prepared for every class) to a low of 2.33 (I have the ability to say no), indicating somewhat weak areas for the SBAE teachers. Specifically, the component of greatest concern was work-life balance with the lowest three mean scores. Work-life balance is not a new concern, as the continual increase in SBAE teacher workload and community expectation has been an ongoing discussion within the literature (Boone & Boone, 2009; Clemons et al., 2021; Edwards & Briers, 1999; Murray et al., 2011; Sorensen et al., 2016; Traini et al., 2020), as it ultimately impacts work-life balance.

Another area of potential concern is within the intracurricular engagement component, specifically related to SAEs. Two items focus on SAEs, including I instruct students through SAEs and I facilitate record keeping for degrees and awards. These two items resulted in mean scores of 2.88 and 2.85 respectively, which are of concern, as the fall between somewhat weak (2.0) and somewhat strong (3.0), while SAE is considered an integral component of a complete SBAE program (National FFA Organization, 2015). SAE has also been discussed as additional time SBAE teachers must commit to overseeing the associated task, which is time consuming and often daunting for newer teachers (Torres et al., 2008). Boone and Boone (2007) described these related tasks as often going unnoticed by administrators and cause teachers to struggle with class preparation. Perhaps this is further confirmed within this study, as participants reported a mean score of 2.89 for the item, I am prepared for every class.

Determining the self-perceived areas of effectiveness and needs for improvement using the ETI-SBAE allows teachers to reflect upon their current human capital (Little, 2003; Schultz, 1971; Smith, 2010; Smylie, 1996), ultimately guiding professional development opportunities to help further career specific capital (Becker, 1964). Providing teachers an opportunity for self-reflection provides them the chance to seek purposeful professional development that could result in personal benefit for them professionally, offsetting the longstanding trend of little or no benefit to the teachers (National Research Council, 2000). Regardless, professional development has been identified as a critical way to support teachers (Desimone, 2011) and this research can serve as a starting point for the recommended research on engagement in professional development designed to meet SBAE teacher needs (Easterly & Myers, 2019).

Perhaps providing SBAE teachers with a valid instrument (ETI-SBAE) to evaluate their effectiveness across a complete SBAE program (i.e., classroom and laboratory instruction, FFA advisement, and SAE supervision) will encourage them to seek purposeful professional development opportunities, potentially increasing student success (Kane & Staiger, 2008; Stronge et al., 2011). Therefore, it is recommended that SBAE teachers use the ETI-SBAE to evaluate their areas of strength and weakness to identify gaps to be filled by professional development opportunities. Supervisors and administrators of SBAE teachers should also consider the ETI-SBAE to gauge the needs of their SBAE teachers. This exploratory study represented a small sample of SBAE teachers, therefore, the replication of this study using larger pools of teachers attending professional development events is warranted. Future research should evaluate the impact of purposeful professional development on teaching effectiveness using the ETI-SBAE.

Participants represented a range of personal and professional characteristics (see Table 2), allowing teaching effectiveness to be compared across those (i.e., age, gender, ethnicity, certification pathway, and number of years teaching SBAE). The only statistically significant difference was found between gender, as women perceived themselves to be more effective than men F (17, 10) = 2.91, p < .05. Although this is only a self-perceived effectiveness, there is room for growth across the SBAE teaching spectrum. This study suggests the need for professional development opportunities related to class preparation, SAE instruction, record keeping and work/life balance (i.e., leading a balanced life, asking for help, and having the ability to say no).

Recommendations

Although teaching effectiveness has been defined as a multi-dimensional (Farrell, 2015), elusive concept (Stronge et al., 2011), the effective teaching model for SBAE teachers (see Figure 2) should be used as a guide in conjunction with the ETI-SBAE to determine the specific needs of an individual teacher based on their overall effectiveness and personal, professional, and environmental factors to increase their human capital (Becker, 1964), leading to increased teaching effectiveness. SBAE teachers should consider their strengths and weaknesses related to delivering a complete program (i.e., classroom/laboratory instruction, FFA advisement, and SAE supervision) and then seek appropriate professional development to help addresses those areas of concern. Additionally, SBAE stakeholders responsible for developing professional development workshops should consider the needs of their target audience and be purposeful in the offerings provided, as needs of SBAE teachers vary across a wide spectrum of personal and professional characteristics.

Considering recommendations for future research, SBAE teacher preparation faculty should replicate this study during in-service trainings to better understand the needs of their constituents. Research should also consider how to best support the human capital development of teachers and measure teaching effectiveness in the given space. Furthermore, qualitative inquiries should be used to explore SBAE teachers’ perceptions of the effective teaching model and instrument to further develop and refine the items to meet the needs of current teachers across the country to better support self-evaluation to provide purposeful professional development opportunities focused on increasing career specific human capital.

References

Becker, G. S. (1964). Human capital: A theoretical and empirical analysis with special reference to education. National Bureau of Economic Research.

Boone, H. N., & Boone, D. A. (2007). Problems faced by high school agricultural education teachers. Journal of Agricultural Education, 48(2), 36–45. https://doi.org/10.5032/jae.2007.02036

Boone, H. N., & Boone, D. A. (2009). An assessment of problems faced by high schoolagricultural education teachers. Journal of Agricultural Education, 50(1), 21–32. https://doi.org/10.5032/jae.2009.01021

Clemons, C., Hall, M., & Lindner, J. (2021). What is the real cost of professional success? A qualitative analysis of work and life balance in agriscience education. Journal of Agricultural Education, 62(1), 95-113. http://doi.org/10.5032/jae.2021.01095

Darling-Hammond, L. (2010). Evaluating teacher effectiveness: How teacher performance assessments can measure and improve teaching. Center for American Progress.https://www.americanprogress.org/issues/education–k-12/reports/2010/10/19/8502/evaluating–teacher–effectiveness/

Desimone, L. M. (2011). A primer on effective professional development. Phi delta kappan, 92(6), 68–71. https://doi.org/10.1177%2F003172171109200616

Easterly, R. G. T., & Myers, B. E. (2019). Professional development engagement and career satisfaction of agriscience teachers. Journal of Agricultural Education, 60(2), 69–84. https://doi.org/10.5032/jae.2019.02069

Eck, C. J., Robinson, J. S., Ramsey, J. W., & Cole. K. L. (2019). Identifying the characteristics of an effective agricultural education teacher: A national study. Journal of Agricultural Education, 60(4), 1–18. https://doi.org/10.5032/jae.2019.04001.

Eck, C. J., Robinson, J. S., Cole, K. L., Terry Jr., R., & Ramsey, J. W. (2020). Validation of the effective teaching instrument for school-based agricultural education teachers. Journal of Agricultural Education, 61(4), 229–248. http://doi.org/10.5032/jae.2020.04229

Edwards, M. C., & Briers, G. E. (2001). Cooperating teachers’ perceptions of important elements of the student teaching experience: A focus group approach with quantitative follow-up. Journal of Agricultural Education, 42(3), 30–41. https://doi.org/10.5032/jae.2001.03030

Farrell, T. S. C. (2015). It’s not who you are! It’s how you teach! Critical competencies associated with effective teaching. RELC Journal, 46(1), 79–88. https://doi.org/10.1177/0033688214568096

Field, A. (2009). Discovering statistics using SPSS (3rd ed.). Sage.

Field, A. (2014). Discovering statistics using SPSS (4th ed.). Sage.

Heckman, J. L. (2000). Invest in the very young. Chicago, IL: Ounce of Prevention Fund. http://www.ounceofprevention.org/downloads/publications/Heckman.pdf

Kane, T. J., & Staiger, D. O. (2008). Estimating teacher impacts on student achievement: An experimental evaluation. National Bureau of Economic Research, Working Paper No. 14607.https://doi.org/10.3386/w14607

Little, J. W. (2003). Inside teacher community: Representations of classroom practice. Teachers College Record, 105(6), 913–945. https://www.tcrecord.org/content.asp?contentid=11544

McDonald, R. P. (1997). Haldane’s lungs: A case study in path analysis. Multivariate Behavioral Research, 32(1), 1–38. https://doi.org/10.1207/s15327906mbr3201_1

Murray, K., Flowers, J., Croom, B., & Wilson, B. (2011). The agricultural teacher’s struggle for balance between career and family. Journal of Agricultural Education, 52(2), 107–117. https://doi.org/10.5032/jae.1999.01038

National FFA Organization. (2015). Agricultural education. https://www.ffa.org/agricultural-education/

National Research Council. (2000). How people learn. National Academy Press.

Nunnally, J. C. (1978). Psychometric theory (2nd ed.). McGraw-Hill.

Privitera, G. J. (2020). Research methods for the behavioral sciences (3rd ed.). SAGE.

Roberts, T. G., & Dyer, J. E. (2004). Characteristics of effective agriculture teachers. Journal of Agricultural Education, 45(4), 82–95. https://doi.org/10.5032/jae.2004.04082

Schultz, T. W. (1971). Investment in human capital: The role of education and of research.
 The Free Press.

Smith, E. (2010). Sector–specific human capital and the distribution of earnings. Journal of Human Capital, 4(1), 35–61. https://doi.org/10.1086/655467

Smylie, M. A. (1996). From bureaucratic control to building human capital: The importance of teacher learning in education reform. Educational Researcher, 25(9), 9–11. https://doi.org/10.3102/0013189X025009009

Sorensen, T. J., McKim, A. J., & Velez,  J. J. (2016). A national study of work-family balance and job satisfaction among agriculture teachers. Journal of Agricultural Education, 57(4), 146-159. https://doi.org/10.5032/jae.2016.04146

Spenner, K. I., (1985). The upgrading and downgrading of occupations: Issues, evidence, and implications for education. Review of Educational Research, 55(2), 125–154. https://doi.org/10.2307/1170188

Stronge, J. H., Ward, T. J., & Grant, L. W. (2011). What makes good teachers good? A cross-case analysis of the connection between teacher effectiveness and student achievement. Journal of Teacher Education, 62(4), 339–355. https://doi.org/10.1177/0022487111404241

Terry, R., Jr., & Briers, G. E. (2010). Roles of the secondary agriculture teacher. In R. Torres, T. Kitchel, & A. Ball (Eds.), Preparing and advancing teachers in agricultural
education
(pp. 86-98). Columbus: Curriculum Materials Service, The Ohio State University.

Torres, R. M., Ulmer, J. D., & Aschenbrener, M. S. (2008). Workload distribution among agriculture teachers. Journal of Agricultural Education, 49(2), 75–87. https://doi.org10.5032/jae.2008.02075

Traini, H. Q., Yopp, A. M., & Roberts, R. (2020). The success trap: A case study of early career agricultural education teachers’ conceptualizations of work-life balance. Journal of Agricultural Education, 61(4), 175-188. http://doi.org/10.5032/jae.2020.04175

Wright, S. P., Horn, S. P., & Sanders, W. L. (1997). Teacher and classroom context effects on student achievement: Implications for teacher evaluation. Journal of Personnel Evaluation in Education, 11(1), 57–67.https://doi.org/10.1023/A:1007999204543