Reconceptualizing Problem-Solving: Applications for the Delivery of Agricultural Education’s Comprehensive, Three-Circle Model in the 21st Century

Whitney Figland, Dutchtown High School,

Richie Roberts, Louisiana State University,

J. Joey Blackburn, Louisiana State University,

PDF Available


Problem-solving has been an integral tenet of school-based, agricultural education (SBAE) since its inception. However, in many ways, the pedagogy has changed considerably. This shift appears to have caused problem-solving’s pedagogical dimensions and underlying philosophical foundation to become conflated with other methods of instruction. Consequently, fundamental questions persist:“Should problem-solving be practiced as a distinct pedagogy?” And if so, “What implications exist for its use in SBAE?” In response, this philosophical study sought to examine perspectives on problem-solving and explain how it has been advanced in the discipline. A product of this investigation was the emergence of three principles that appear to be foundational to problem-solving: (1) identify problems, (2) analyze information, and (3) evaluate solutions. Distinguishing such principles helped describe how problem-solving has been operationalized historically. However, it also revealed a need to expand its current understanding and use. In response, we proposed the Integrated Problem-Solving Model for Agricultural Education to illuminate how it could be reconceptualized as a guiding philosophy for SBAE to better navigate increasingly complex issues and problems in the 21stCentury.


Over the past few decades, a variety of instructional methods have been advanced in education to encourage students to obtain the skills they need to thrive in the 21stCentury (Koichu, 2019; Ulmer & Torres, 2007). However, more recently, it has become critical for educators to adopt methods of instruction that encourage students to develop higher-order thinking skills (Fuhrmann & Grasha, 1983; Jonassen, 2000; Ulmer & Torres, 2007). One explanation for this shift is that employers often view the ability to solve problems, a higher-order skill, as essential in the workplace (Gokhale, 1995; Robles, 2012; Zimmerman & Risemberg, 1997). Nevertheless, many students are not challenged to engage in real-world problems in their schooling (Jonassen, 2000). Instead, they learn through rote memorization and other forms of direct instruction in which the instructor passively transfers knowledge – an approach that does little to prepare students for a successful career (Jonassen, 2000). As a consequence, a need has emerged to embed more opportunities for students to authentically engage in problem-based experiences that accurately reflect the world in which they operate. Previous research has demonstrated that engaging students in learning activities that challenge their problem-solving abilities can foster metacognitive growth, i.e., the ability to reflect on learning and modify one’s behavior accordingly (Sproull, 2001). For example, through the use of such an approach, students learn to grapple with problems, from simple to complex, by developing solutions that complement the knowledge and skills they developed through their coursework (Jonassen, 2000).

From a historical perspective, the problem-solving approach can be traced to classical philosophers such as Socrates and Plato, who believed that individuals came to truth by socially constructing meaning through participation in debates (Phillips, 2010). For example, The Socratic Method draws on cooperative dialogue in which individuals answer questions that stir new thoughts and ideas about the nature of knowledge and knowing (Phillips, 2010). This early approach to problem-solving appeared to serve as a basis for contemporary views on the method and helped further distinguish it as a pedagogy (Dewey, 1910; Phillips, 2010). Using this foundation, John Dewey (1910) further concretized the key dimensions of problem-solving. For instance, in Dewey’s (1910) How We Think, he outlined five tenets called the Complete Action of Thought or Reflective Thinking that included: (1) a felt difficulty; (2) location and definition of a problem; (3) creation of possible solutions; (4) test solutions; and (5) further explorations and evaluation. These processes provided a basis for conceptualizing problem-solving as a process that could be used to mature students’ intellectual development and critical thinking (Dewey, 1910). However, Dewey never used the term problem-solving in his academic work.

Despite this, Dewey, along with other educational philosophers, paved the way for problem-solving to be recognized and practiced as a pedagogy in the 20thCentury (Moore & Moore, 1984). However, discourse on problem-solving has been muddled by the introduction of terms, such as problem-based learning (PBL) and inquiry-based instruction (IBI), that although are distinct in form and function also appear to exhibit striking “pedagogical congruence” (Parr & Edwards, 2004, p. 104). As a result, a definition for problem-solving does not appear to have reached consensus. Some disciplines have responded to this issue by crafting descriptions of the pedagogy that integrate the various perspectives of philosophers, researchers, and practitioners (Crunkilton & Krebs, 1967; Jonassen, 2000; Merwin, 1977). The definition of problem-solving, therefore, varies considerably among academic disciplines. For example, in technology education, Merwin (1977) defined problem-solving as “a sequence of procedures in the thinking process that a learner employs in dealing with a problem or task” (p. 123). Jonassen (2000) added that problem-solving could also allow students to “find [answers to] the unknown.” (p. 65). In agricultural education, however, Crunkilton and Krebs (1967) defined problem-solving “as a method of teaching in which the teacher guides the class through a series of questions. . .” (p. 90). Because of such variant depictions, therefore, problem-solving’s philosophical and operational tenets remain unclear.

Nevertheless, the pedagogy appears to have been considered an integral tenet of school-based, agricultural education (SBAE). For example, the use of the pedagogy emerged in SBAE in concert with the Smith-Hughes Act of 1917 (Moore & Moore, 1984). During this period, the U.S. experienced an industrial revolution, which shifted education and catalyzed reform efforts (Roberts, 1957; Roberts & Ball, 2009; Talbert et al., 2007). This shift also piqued national interest in the enhancement of skilled laborers (Roberts & Ball, 2009). Because of these changes in U.S. society, it is believed that problem-solving became diffused as a method of instruction in SBAE (Moore & Moore, 1984) and experienced more widespread adoption (Boone, 1990; Cano & Martinez, 1991; Crunkilton & Krebs, 1967; Dyer & Osborne, 1996; Flowers & Osborne, 1988; Hammonds, 1950; Krebs, 1967; Newcomb et al., 1993; Phipps & Osborne, 1988; Torres & Cano, 1995a; Torres & Cano, 1995b). However, problem-solving has been described, represented, and depicted in a variety of ways throughout its rich history in SBAE. Such variances were made explicitly clear in submissions that described problem-solving in The Agricultural Education Magazine (The Magazine).

For example, as evinced in The Magazine, problem-solving’s use in SBAE emerged in the mid 20th Century (Hammonds, 1950; Krebs, 1967). However, in many ways, the pedagogy, and other methods of instruction, have evolved considerably in the early 21st Century as practitioners responded to key shifts in American society (Roberts & Edwards, 2015, 2018). In particular, in the early 2000s, the enactment of No Child Left Behind (NCLB) created a turning point in U.S. education policy that resulted in wide-sweeping reform efforts, which required states to adopt learning standards and assessments to monitor better and track students’ progress, especially regarding mathematics, reading, and science (U.S. Department of Education, 2001). Such changes also largely influenced approaches to teaching and learning that were depicted in The Magazine. For instance, contributors published articles on learning approaches that featured: (a) PBL, (b) IBI, and (c) experiential learning that focused on applications of science, technology, engineering, and mathematics (STEM) (Retallick & Miller, 2005; Torres & Cano, 2005a).

Although such work was pivotal to positioning SBAE as relevant, during this period, problem-solving’s pedagogical dimensions and underlying philosophical foundation also appeared to become blurred and conflated with other teaching and learning approaches. As a consequence, a dichotomy emerged in which some practitioners began to represent problem-solving as a distinct method of instruction, while others articulated it as an approach that was largely synonymous with other pedagogies (Parr & Edwards, 2004). Because of these discrepancies in the problem-solving literature, a lack of clarity exists in SBAE regarding how problem-solving should be delivered conceptually. To complicate this issue further, however, early literature in SBAE (Crunkilton & Krebs, 1967; Moore & Moore, 1984) on problem-solving argued it lacked a solid theoretical foundation and should be approached with caution when used as a method of instruction. As a consequence, two questions persist: “Should problem-solving be practiced as a distinct pedagogical approach? And if so, “What implications exist for using problem-solving in the 21stCentury and beyond?” These questions motivated the current study.


To address this issue, the purpose of this philosophical investigation was threefold: (1) describe existing perspectives and theories on problem-solving; (2) explain how problem-solving has been used as a method of instruction in SBAE; and (3) illuminate how the problem-solving could be reconceptualized to enrich the delivery of SBAE’s comprehensive, three-circle model. This research aligns with the American Association for Agricultural Education’s National Research Agenda Research Priority 7: Addressing Complex Problems. Specifically, this research addresses question one, “What methods, models, and programs are effective in preparing people to solve complex problems, interdisciplinary problems?”(Andenoro, Baker, Stedman, & Pennington, Weeks, 2016, p. 59).

Methods and Procedures

Philosophical research seeks to analyze existing axioms and beliefs in a given domain (Roberts & Edwards, 2020; Salevouris & Furay, 2015). This study, therefore, synthesized educational theories and perspectives from prominent problem-solving advocates, while also advancing new understandings for SBAE. From a philosophical perspective, problem-solving aligns with the worldview of pragmatism, which advances the belief that individuals construct meaning from their experiences as they interact with others and navigate issues and problems in a real-world context (Crotty, 1998). To meet the study’s purpose, we synthesized theoretical and practitioner-oriented work as well as empirical evidence supporting problem-solving through the use of the following sources: (a) books, (b) peer-reviewed journal articles, and (c) The Agricultural Education Magazine.

All references were subjected to internal and external criticisms to triangulate our findings (Salevouris & Furay, 2015). For instance, we evaluated each source for authenticity concerning its origin and content (Salevouris & Furay, 2015). Further, we analyzed how the investigation’s (a) findings, (b) conclusions, (c) implications, and (d) recommendations might provide inferences for future work. To accomplish this, we used a conceptual mapping technique in which we scrutinized each source’s existing similarities and discrepancies (Salevouris & Furay, 2015). For example, through mapping, we revealed each source’s interconnectedness and congruence with the study’s purpose (Salevouris & Furay, 2015). As a result, we developed key empirical assertions through the use of an analytic memoing technique (Saldaña, 2015). Then, we synthesized our findings by weaving our assertions into a narrative that described how problem-solving could be reimagined to deliver agricultural education’s comprehensive, three-circle model in transformative new ways.

Perspectives and Theories on Problem-Solving

Through our analysis, six leading perspectives – John Dewey, Rufus Stimson, Werrett Charters, William Lancelot, John Bransford, and Scott Johnson – on problem-solving appeared to most prominently shape existing thought and use of the pedagogy in SBAE as well as in teaching and learning more broadly. Our description of each perspective is provided next.

John Dewey

John Dewey largely gained prominence as a thought leader as a result of his time at the University of Chicago after creating a progressive school, called the Dewey Laboratory School, that he used to foment his philosophy and theory on experience and education (Dewey, 1910, 1938). Dewey believed that students should be viewed as active pursuers of knowledge that lived, worked, and interacted in the world as a social being (Hyland, 1993). Dewey was also a strong advocate for students actively engaging in experiences that were based on real-world issues and problems (Dewey, 1938). In particular, Dewey maintained that teaching students to think and solve problems was integral to creating successful members of society (Dewey, 1910). Further, Dewey (1910) detailed in How We Think his five-step model for reflective thinking. Dewey’s five axioms for reflective thinking included: (a) felt difficulty, (b) location and definition of the problem, (c) creation of solutions, (d) development of reasons for solutions, and (e) further exploration and evaluation (Dewey, 1910).

Rufus Stimson

Rufus Stimson has also been identified as a pivotal early leader to agricultural education in the U.S. (Moore, 1988, 2018). Perhaps, his most significant contribution to the discipline was the formalization of the project-based method, which is now recognized as the Supervised Agricultural Experience (SAE) component of agricultural education’s comprehensive, three-circle model (Camp & Crunkilton, 1985; Foor & Connors, 2010; Moore, 1988). Although Stimson (1911, 1919) did not use the term problem-solving, many of the core features of the project-based method, align naturally with the pedagogy. For example, Stimson (1911) advanced three major projects relevant for farm work: (1) improvement, (2) experimental, and (3) productive. In his description of project types, Stimson (1919) explained that each would require students to identify relevant problems, collect evidence, and design a strategy to respond to each unique issue or problem. Such work also deeply influenced his protégé Werrett Charters.

Werrett W. Charters

Werrett Charters was a student of Dewey for three years at the University of Chicago. It is because of this experience that Charters is often recognized as a disciple of Dewey and a proponent of his philosophy and beliefs on teaching and learning. However, he also made pivotal advancements to problem-solving in his own right. For instance, in Charters’ works Methods of Teaching and Teaching (1912) and Teaching the Common Branches (1924) he emphasized the importance of having students solve real-world problems that piqued their interest and motivated them to be actively engaged in the learning process (Charters, 1912, 1924). Similar to Dewey’s (1910) reflective thinking model, Charters advanced both inductive and deductive reasoning (Charters, 1924). However, Charters also theorized that inductive thinking processes could help propel students’ deductive thinking as they work through contextualized problems, form hypotheses, and arrive at concrete solutions (Charters, 1912). As a result, Charters (1924) advanced three stages of problem-solving: (a) definition of the problem, (b) creation of a hypothesis, and (c) testing and verifying the solution. Such advancements appear to have profoundly influenced how problem-solving was operationalized in its formative years in SBAE.

William Lancelot

William Lancelot was another early proponent of problem-solving in SBAE. Lancelot received his bachelor’s degree in agricultural education in 1919 and shortly after pursued his master’s degree in education at Columbia University. During his graduate studies, Lancelot was introduced to the works of Dewey and Charters, which greatly influenced by his views on education and society (Lancelot, 1944). As a result, Lancelot advocated for transitioning education from a rote memorization model to one that closely mirrors problem-solving (Lancelot, 1944). In his book Permanent Learning (1944), he described different types of problems that students may encounter during their educational experiences, how to use such problems productively, ways to integrate problems across contexts, and the uses of the problem-solving in regard to teaching and learning. Further, Lancelot (1944) conceptualized 10 steps that educators could use to implement problem-solving as a pedagogy. Similar to Dewey and Charters, Lancelot also articulated the role of inductive and deductive reasoning. Because of his deep connection to SBAE, his work appeared to influence the discipline profoundly. However, in the proceeding decades, other prominent educational leaders influenced SBAE as well.

John D. Bransford

John Bransford was an educational psychologist at the University of Washington who authored several critical works regarding cognition, learning styles, and teaching. For example, in Bransford’s and Stein’s (1984) The IDEAL Problem Solver, he introduced an approach to problem-solving that encompassed the ideas and theories of several key theorists such as Kolb (1984), Newell and Simon (1972), and Sterberg (1981). The IDEAL problem-solving model also drew on concepts from the Socratic method, the scientific method, and John Dewey’s reflective thinking model (Phipps, Osborne, Dyer, & Ball, 2008). In particular, the IDEAL problem-solving model largely reconceptualized Dewey’s reflective thinking model using the following processes: (a) identify problems and opportunities, (b) develop goals, (c) explore possible strategies, (d) anticipate outcomes, and (e) look back. It is critical to note that in the IDEAL problem-solving model, each step is fluid and may not unfold successively (Bransford & Stein, 1984). Figure 1 depicts Bransford’s and Stein’s (1984) IDEAL problem-solving model.

Figure 1

Bransford’s and Stein’s (1984) IDEAL Problem-Solving Model

Note. Adapted from “The Influence of Cognitive Diversity on Group Problem-solving Strategy” by A. J. Lamm, C. W. Shoulders, G. T. Roberts, T. A. Irani, L. J. Snyder, and J. Brendemuhl, 2012, Journal of Agricultural Education, 53(1), p. 19. Copyright 2012 by Journal of Agricultural Education. Reprinted with permission.

Scott Johnson

Anothervein of literature that has greatly influenced problem-solving theory and practice is troubleshooting. And, perhaps, the individual that has most profoundly advanced thought on troubleshooting is Scott Johnson. For example, Johnson’s (1989) technical troubleshooting model provided conceptual guidance for practitioners to support students as they navigate complex curricular problems. In the first phase of the model, students collect and interpret information through two primary sources: (1) procedural knowledge, and (2) external sources (Johnson, 1991). Procedural knowledge refers to an individual’s understandings that result from processes such as reading diagrams, using mathematical formulas, and understanding manuals (Johnson, 1989). Meanwhile, external sources of information typically originate from the knowledge that individuals glean from jobs, technical support, and evaluations (Johnson, 1989). Of note, both sources of knowledge help troubleshooters form a more concrete understanding of the problem (Johnson, 1991). Based on Johnson’s (1989) model, after individuals acquire information from the aforementioned sources, they enter an interpretation phase (Johnson, 1991). This step is critical because troubleshooters must identify which concepts are relevant based on their prior learning and experiences (Johnson, 1989). If enough information has been gathered, then the troubleshooter can then move into the hypothesis generation phase. During this step, individuals generate one or more hypotheses about the problem (Elstein et al., 1978; Frederiksen, 1984; Johnson, 1989). After the hypothesis generation phase, troubleshooters evaluate their results, which allows the troubleshooter to test their hypotheses and determine whether it should be accepted or rejected (Johnson, 1991). If the troubleshooter did not solve the problem, they restart the process, as depicted in Figure 2 (Johnson, 1991).

Figure 2

Troubleshooting Model

Note. Adapted from “A description of expert and novice performance differences on technical troubleshooting tasks” by S.D. Johnson, 1989, Journal of Industrial Teacher Education, 26(3), p. 20. Copyright 1989 by Journal of Industrial Teacher Education. Reprinted with permission.

Problem-Solving’s Use in SBAE

In addition to being articulated by leading educational theorist, problem-solving has also been advanced in SBAE since its early inception as a way to facilitate authentic learning for students (Moore & Moore, 1984; Parr & Edwards, 2004; Retallick & Miller, 2005; Torres & Cano, 2005b). As an illustration, Phipps and Cook (1956) advanced Dewey’s (1910) stages of problem-solving by contextualizing the pedagogy using examples in agriculture. Later, Crunkilton and Krebs (1967) introduced five key phases to consider when using the problem-solving in SBAE. Those phases included: (a) interest approach; (b) create objectives; (c) anticipate problems; (d) solve the problem; (e) evaluate and apply (Crunkilton & Krebs, 1967).

Further, Phipps and Osborne (1988) described their views on problem-solving in The Handbook on Agricultural Education in Public Schools. Phipps and Osborne’s (1988) approach included similar elements outlined in previous works on problem-solving. For instance, their six-step method included: (a) experience a situation, (b) locate and define the problem, (c) attempt a trial solution, (d) explore reference and information, (e) arrive at a group solution, and (f) evaluate. Finally, Newcomb et al. (1993) addressed problem-solving in Methods of Teaching Agriculture, which appears to be one of the most recent attempts to outline the pedagogy for SBAE. In this work, the problem-solving method to teaching and learning is outlined in six steps, which were grounded in the previously reported literature. Those six steps to teaching the problem-solving approach in agricultural education included: (a) interest approach, (b) objectives to be achieved, (c) problems to be solved or answered, (d) problem solution, (e) test solutions through application, and (f) evaluate solutions (Newcomb et al., 1993). Therefore, through our analysis, it appeared that leading perspectives on problem-solving and prominent literature in SBAE demonstrated significant “pedagogical congruence” (Parr & Edwards, 2004, p. 104). As a consequence, a synthesis of these concepts was warranted to advance thought on problem-solving for SBAE.

Synthesis: Advancing the Shared Principles of Problem-Solving

To advance new understandings, we distilled shared principles from the leading perspectives on problem-solving and the SBAE literature. To accomplish this, we grounded our approach in a concept known as consilience, first introduced by William Whewell (1840). Consilience represents the merging of stands of knowledge from various disciplines, perspectives, and domains to offer new understandings of a phenomenon (Whewell, 1840). Using this approach, we engaged in a mapping technique to visualize each perspective’s similarities and discrepancies while also acknowledging that some authors might not have specifically used the term problem-solving but in essence were describing a similar concept. A product of this procedure was the emergence of three shared principles that appear to be foundational to existing descriptions and representations of problem-solving as a pedagogy. To promote understanding, we chose to represent the shared principles using practical language in hopes that practitioners, researchers, and theorists alike might find them useful. Given such caveats, we offer the three principles of problem-solving that emerged from our analysis: (1) identify problems, (2) analyze information, and (3) evaluate solutions.

Principle #1: Identify Problems

A fundamental characteristic of problem-solving is ensuring that students have the knowledge and skills they need to identify relevant problems (Bransford & Stein, 1984; Crunkilton & Krebs, 1967; Dewey, 1910, 1938; Charters, 1912, 1924; Lancelot, 1944; Newcomb et al., 1993; Phipps & Osborne, 1988). This notion applies to whether problems are presented in the context of a classroom or in a more authentic learning environment (Dewey, 1910, 1938). To equip students with such skills, however, requires introducing them to foundational agricultural knowledge so that they can begin to understand connections, notice disturbances, and appropriately detect when an issue or problem exists (Lancelot, 1944). Therefore, developmental appropriateness is of central importance to ensure that students are prepared as they gain exposure to problems (Charters, 1924), especially in the context of SBAE. As a consequence, SBAE teachers should frame problems in ways that challenge students, but that do not trigger forms of dissonance that may be interpreted as uneducative (Dewey, 1910). Through a synthesis of the literature, it became apparent that to ensure students are able to identify problems successfully, SBAE instructors must scaffold them in ways that allow students to mature before they confront issues and problems of a greater cognitive complexity (Bransford & Stein, 1984; Charters, 1912, 1924; Crunkilton & Krebs, 1967; Dewey, 1910; Goossen et al., 2017; Lancelot, 1944).

Principle #2: Analyze Information

As inevitable and ubiquitous as problems are in everyday life, human beings often resist analyzing trends and other relevant data to arrive at possible solutions (Dewey, 1910; Phipps & Osborne, 1988). An essential principle of problem-solving, therefore, is to analyze information. Through our synthesis, we noted that authors of seminal works on problem-solving described a plethora of ways to collect and analyze relevant evidence. For example, articulated strategies included conducting observations (Dewey, 1910, 1938), analyzing test and control specimen (Charters, 1924), as well as generating a hypothesis based on individuals’ procedural or external sources of knowledge and then assembling relevant corroborating or disconfirming evidence (Johnson, 1989). Despite the diversity in strategies available, however, SBAE teachers should ensure that students systematically collect information and evaluate it using rigorous procedures (Bransford & Stein, 1984; Charters, 1924; Dewey, 1910, 1938; Johnson, 1989, 1991).

Principle #3: Evaluate Solutions

Because problem-solving is a process, the solution emerges over time, through trial and error (Bransford & Stein, 1984; Charters, 1912; Crunkilton & Krebs, 1967; Dewey, 1910, 1938; Lancelot, 1944; Newcomb et al., 1993; Phipps & Osborne, 1988). Due to the dynamic nature of such, the evaluation of a solution is in a constant state of flux by which new discoveries can alter the beginning, middle, or late phases of the problem-solving process (Dewey, 1938; Johnson, 1989, 1991). This developmental view of the final principle, therefore, recognizes that as students learn and acquire information, an iterative progression transpires in which they co-influence past, present, and future solutions to numerous issues and problems (Dewey, 1938; Charters 1924). It is through this non-linear process; therefore, that SBAE students can critically reflect and begin to authentically evaluate whether their solution to a given problem is viable.

Reconceptualizing Problem-Solving for SBAE

Embedded in the three principles of problem-solving are features that stand as prominent attributes of the pedagogy. Therefore, our synthesis of ideas, theories, and models was a necessary step to illuminate how problem-solving has been advanced and used as a method of instruction. However, this process also revealed the need to expand our current view and understanding of problem-solving in SBAE. We maintain that such a reconceptualization could crystalize new possibilities for future research, theory, and practice.

For example, although problem-solving has largely been represented as a method of instruction, and rightfully so, we maintain that problem-solving’s current limits and parameters in SBAE could be expanded so that it may also be viewed as a guiding philosophy for the discipline. To that end, we offer (see Figure 3) the Integrated Problem-Solving Model for Agricultural Education to demonstrate how this idea could be operationalized in SBAE. In the model’s development, our goal was to enrich agricultural education’s comprehensive, three-circle model by embedding the core principles of problem-solving – identify problems, analyze information, and evaluate solutions – in a way that would aptly depict the synergistic and complementary power of this merger.

Figure 3

Integrated Problem-Solving Model for Agricultural Education

Note. The principles of problem-solving are shaded to demonstrate their permeability through and between each dimension of SBAE.

Foundationally, therefore, the model advances the notion that problem-solving is entrenched through and between each dimension of agricultural education. Consequently, the principles of problem-solving are interwoven with the three components of agricultural education: (a) classroom and laboratory, (b) Supervised Agricultural Experience (SAE), and (c) The National FFA Organization (FFA). It is important to note that the principles of problem-solving are not exclusive to a single dimension of agricultural education. Instead, they should be considered permeable as the problem-solving process unfolds for students through trial-and-error.

To contextualize the model, we developed the following example to demonstrate how the model might be used in SBAE. To begin, consider a student enrolled in an Introduction to Horticulture course (Classroom and Laboratory) who noticed that the Poinsettias she planted in class a few weeks prior appeared to be stunted in growth (Principle #1: Identify Problems). To capitalize on the learning embedded in this problem, her SBAE teacher encouraged her to reflect on the learning concepts introduced earlier in the semester. After a few minutes, she answered, “Maybe it is because the plants are under the shade cloth, so they are not getting enough sunlight.” Her SBAE teacher responded, “That is a great start, perhaps, you should design a project (SAE) that will allow you to collect data to determine whether or not your hypothesis is correct.” Over the next few weeks, she collected data using control and experimental trials, and as a result, began to observe trends through an analysis of relevant information (Principle #2: Analyze Information). After this procedure, she drew the conclusion that because Poinsettias are a tropical flower, they were not getting enough direct sunlight when placed under a shade cloth in the greenhouse. She also developed a solution to this problem for individuals who may be experiencing similar issues. Because her SBAE teacher perceived she had done quality work, he encouraged her to carry out additional trails so this knowledge could be used to impact the community through a service project (FFA). As a result, she decided to work with the local FFA Officer Team to organize a professional development opportunity for senior citizens based on the knowledge she had acquired through her classroom and Supervised Agricultural Experiences (SAEs). During this session, she also asked the senior citizens to provide feedback on their experience so that she could more carefully evaluate the solutions she provided regarding growing Poinsettias (Principle #3: Evaluate Solutions). As illustrated above, the SBAE teacher wove the three principles of problem-solving throughout each programmatic dimension of agricultural education – classroom and laboratory, SAE, and FFA – for his student. Such use of problem-solving may be easy to dismiss as common sense. However, we counter this position on several grounds. First, what may appear to be common sense for some, may not be viewed as such by those who are new to the discipline, have little experience, or have only considered limited perspectives on problem-solving. And finally, existing descriptions of problem-solving in SBAE do not appear to have represented it in ways that capture the intricacies of the reconceptualization advanced in our philosophical discussion.


Problem-solving has evolved considerably since its early origins. For example, initially, it was depicted as a distinct method of instruction (Charters, 1912). However, since that time, it appears to have become conflated with other pedagogical approaches (Parr & Edwards, 2004). As a consequence, the tenets of problem-solving became ambiguous over time (Crunkilton & Krebs, 1967; Moore & Moore, 1984). In this investigation, therefore, we sought to examine existing perspectives on problem-solving and explain how problem-solving has been used as a method of instruction. Through our analysis, we conclude that six leading perspectives – Dewey, Stimson, Charters, Lancelot, Bransford, and Johnson – appeared to most profoundly influence the ways in which the pedagogy has been operationalized. From these leading perspectives, we also conclude that three shared principles of problem-solving could be distilled: (1) identify problems, (2) analyze information, and (3) evaluate solutions. The first principle, identify problems, reflected that need for educators to scaffold problems in ways that are challenging but also developmentally appropriate so that students can gain confidence before attempting to solve problems of a greater complexity (Bransford & Stein, 1984; Crunkilton & Krebs, 1967; Dewey, 1910, 1938; Charters, 1912; 1924; Lancelot, 1944). Meanwhile, the second principle, analyze information, represented the need for students to collect and analyze quality data using rigorous procedures before drawing conclusions about a problem (Bransford & Stein, 1984; Charters, 1924; Dewey, 1910; Johnson, 1989, 1991).

The last principle, evaluate solutions, suggested that because problem-solving is a process, students should evaluate their solutions to problems over time through trial and error (Bransford & Stein, 1984; Crunkilton & Krebs, 1967; Dewey, 1910, 1938; Charters, 1912, 1924; Lancelot, 1944; Newcomb et al., 1993; Phipps & Osborne, 1988). Although our distillation of the shared principles helped describe how the pedagogy has been operationalized as a method of instruction, it also called attention to the need to expand our current use of problem-solving. Therefore, we introduced the Integrated Problem-Solving Model for Agricultural Education, which advanced the principles of problem-solving embedded through and between each component of agricultural education’s comprehensive, three-circle model: (a) classroom and laboratory, (b) SAE, and (c) FFA. We argue, therefore, that problem-solving can not only be operationalized as a pedagogy but also a guiding philosophy for SBAE moving forward.  

Implications, Recommendations, and Discussion

In recent decades, a growing number of voices from business, government, and higher education have called for more curricular focus to be placed on enhancing agriculture graduates’ ability to communicate, think critically, and innovate (Blickenstaff et al., 2015; Fields et al., 2003). By fostering these process-oriented skills, it is reasoned that future agriculturalist who enter the workforce will be better prepared to traverse a world fraught with complexities that require them to adapt and solve problems on issues such as climate change, disease, global hunger, and water scarcity (National Research Council, 2014; Roberts et al., 2020; Warren English et al., 2018). In response, this philosophical investigation illustrated the ways in which SBAE could draw on its problem-solving foundations to reposition itself, as the headwinds of change threaten to intensify in the 21stCentury and beyond (Brown, 2016). However, such a reorientation will be complex for the discipline to adopt, with even basic discussions about this change, presenting numerous conceptual and practical hurdles.

As a consequence, we offer the following possibilities for future research and practice. First, more dialogue is needed about problem-solving, when conceptualized as both a method of instruction as well as a guiding philosophy for SBAE. To achieve this, perhaps professional development sessions could be offered by the American Association for Agricultural Education (AAAE) and the National Association of Agricultural Education (NAAE). A concerted effort should also be dedicated to diffusing the Integrated Problem-Solving Model for Agricultural Education. As such, we recommend the model be shared, along with illustrative case study examples, in The Magazine as well as the FFA New Horizons. Teacher educators should also introduce the model to preservice teachers by having them consider innovative ways to integrate such into their future SBAE programs. We also suggest that podcasts, popular press articles, and other communication mediums promote SBAE students, advisors, and programs that use the model in exemplary ways. Finally, we recommend the use of social network analysis to analyze the model’s diffusion challenges better by identifying opinion leaders who influence others in SBAE at the node, dyad, and network levels (Borgatti et al., 2018).

Although problem-solving has a deeply entrenched philosophical foundation in SBAE (Moore & Moore, 1984), more work is needed to explore its dimensions. Therefore, we recommend that research be conducted to examine the programmatic outcomes associated with use of problem-solving as a guiding philosophy. For example, does such an approach improve students’ career readiness, creativity, critical thinking, engagement, learning, and motivation (Roberts & Robinson, 2018)? Further, what motivates a SBAE instructor to adopt such a philosophy in an individual program? Additional research is also needed to examine the outcomes of problem-solving’s use as a method of instruction in SBAE. As an illustration, how do the ways SBAE teachers conceptualize, use, and talk about problem-solving affect student outcomes? And do students who solve problems through team-based learning approaches learn better than those assigned individual problem-solving projects (Figland et al., 2020)? These corollary questions warrant further examination.


Andenoro, A. C., Baker, M., Stedman, N. L. P., & Pennington Weeks, P. (2016). Research priority 7: Addressing complex problems. In T. G. Roberts, A. Harder, & M. T. Brashears, (Eds.), American Association for Agricultural Education national research. University of Florida.

Blickenstaff, S. M., Wolf, K. J., Falk J. M., & Foltz. J. C. (2015). College of agriculture faculty perceptions of student skills, faculty competence in teaching areas and barriers to improving teaching. NACTA Journal, 59(3), 219-226.

Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2018). Analyzing social networks (2nd ed.). Sage.

Boone, H. N. (1990). Effect of level of problem-solving approach to teaching on student achievement and retention. Journal of Agricultural Education, 31(1), 18-26.

Bransford, J. D., & Stein, B. S. (1984). The IDEAL problem solver: A guide for improving thinking, learning, and creativity. WH Freeman and Company.

Brown, K. (2016). Resilience, development and global change. Routledge.

Camp, W. G. & Crunkilton, J. R. (1985). History of agricultural education in America: The great individuals and events. Journal of the American Association of Teacher Educators in Agriculture, 26(1), 57-63.

Cano, J., & Martinez, C. (1991). The relationship between critical thinking ability and level of cognitive performance of selected vocational agriculture students. Journal of Agricultural Education, 32(1), 24-29.

Charters, W.W. (1912). Methods of teaching. Row, Peterson & Company.

Charters, W.W. (1924). Teaching the common branches. The Riverside Press.

Crotty, M. (1998). The foundations of social research: Meaning and perspective in the research process. Sage.

Crunkilton, J. R., & Krebs, A. H. (1967). Teaching agriculture through problem-solving. The Interstate Printers & Publishers, Inc.

Dewey, J. (1910). How we think. Dover Publications.

Dewey, J. (1938). Experience and education. Simon and Schuster.

Dyer, J. E., & Osborne, E. W. (1996). Effects of teaching approach on problem-solving ability of agricultural education students with varying learning styles. Journal of Agricultural Education37, 36-43.

Elstein, A. S., Shulman, L. S., & Sprafka, S. A. (1978). Medical problem solving analysis of clinical reasoning. Evaluation & the Health Professions, 13(1), 5-36.

Fields, A. M., Hoiberg, E., & Othman, M. (2003). Changes in colleges of agriculture at land-grant institutions. NACTA Journal, 47(4), 7-15.

Figland, W. L., Blackburn, J. J., & Roberts, R. (2020). Undergraduate students’ perceptions of team-based learning during an introductory agricultural mechanics course: A mixed methods study. Journal of Agricultural Education, 61(1), 262-276.

Flowers, J., & Osborne, E. W. (1988). The problem-solving and subject matter approaches to teaching vocational agriculture: Effects on student achievement and retention. The Journal of Agricultural Education, 29(1), 20-26.

Foor, R. M. & Connors, J. J. (2010). Pioneers in an emerging field: Who were the early agricultural educators? Journal of Agricultural Education, 51(3), 23-31.

Fuhrmann, B. S., & Grasha, A. F. (1983). The past, present, and future in college teaching: Where does your teaching fit? Little, Brown, and Company.

Gokhale, A. A. (1995). Collaborative learning enhances critical thinking. Journal of Technology Education, 7(1), 22-30.

Goossen, C. E., Roberts, R., Kacal, A., Whiddon, A. S., & Robinson, J. S. (2017). The effect of the inquiry-based teaching method on students’ content knowledge and motivation to learn about biofuels, Journal of Southern Agricultural Education Research, 66(1), 1-18.

Hammonds, C. (1950). Teaching agriculture. McGraw-Hill Inc.

Hyland, T. (1993). Vocational reconstruction and Dewey’s instrumentalism. Oxford Review of Education19(1), 89-100.

Johnson, S. D. (1989). A description of expert and novice performance differences on technical troubleshooting tasks. Journal of Industrial Teacher Education, 26(3), 19–37.

Johnson, S. D. (1991). Productivity, the workforce, and technology education. Journal of Technology Education, 2(2), 32-49.

Jonassen, D. H. (2000). Toward a design theory of problem-solving. Educational Technology: Research and Development, 48(4), 63-85. http://link.springer.come/article/10.007%2FBF02300500LI=true#page-1

Koichu, B. (2019). Problem posing in the context of teaching for advanced problem solving. International Journal of Educational Research, 103(1), 1-24.

Kolb, D. A. (1984). Experience as the source of learning and development. Prentice Hall.

Krebs, A. H. (1967). For more effective teaching (2nd ed.). The Interstate Printers and Publishers, Inc.

Lamm, A. J., Shoulders, C., Roberts, T. G., Irani, T. A., Snyder, L. J. U., & Brendemuhl, J. (2012). The influence of cognitive diversity on group problem solving strategy. Journal of Agricultural Education53(1), 18-30.

Lancelot, W. H. (1944). Permanent learning. John Wiley & Sons.

Merwin, W. C. (1977). Models for problem-solving. The High School Journal61(3), 122-130.

Moore, G. E., & Moore, B. A. (1984). The problem-solving approach to teaching: Has it outlived its usefulness? Journal of the American Association of Teacher Educators in Agriculture, 25(2), 3-10.

Moore, G. E. (1988). The forgotten leader in agricultural education: Rufus W. Stimson. Journal of the American Association of Teacher Educators in Agriculture, 29(3),50-58.

Moore, G. E. (2018). Identifying the first generation leaders in agricultural education: The lost Stimson manuscript. Journal of Agricultural Education, 59(4), 137-158.

National Research Council. (2014). Spurring innovation in food and agriculture: A review of the USDA agriculture and food research initiative program. National Academy Press.

Newcomb, L. H., McCracken, J., Warmbrod, J. R., & Whittington M. S. (1993). Methods of teaching agriculture. Pearson.

Newell, A. S., & Simon, H. A. (1972). Human problem-solving. Englewood Cliffs.

Parr, B., & Edwards, M. C. (2004). Inquiry-based instruction in secondary agricultural education: Problem-solving an old friend revisited. Journal of Agricultural Education45(4), 106-117.

Phillips, C. (2010). Socrates café: A fresh taste of philosophy. WW Norton & Company.

Phipps, L. J., & Cook, G. C. (1956). Handbook on teaching vocational agriculture. The Interstate Printers and Publishers, Inc.

Phipps L. J., & Osborne, E. W. (1988). Handbook on agricultural education in public schools. The Interstate Printers & Publishers, Inc.

Phipps, L. J., Osborne, E. W., Dyer, J. E., & Ball, A. (2008). Handbook on agricultural education in public schools (6th ed.). Thomson Delmar Learning.

Retallick, M. S., & Miller, W. W. (2005). Learning for life through inquiry. The Agricultural Education Magazine, 78(3), 17-19.

Roberts, R., & Edwards, M. C. (2015). Service-learning’s ongoing journey as a method of instruction: Implications for school-based, agricultural education. Journal of Agricultural Education, 56(2), 217-233.

Roberts, R., & Edwards, M. C. (2018). Imaging service-learning in The Agricultural Education Magazine from 1929-2009: Implications for the method’s reframing and use. Journal of Agricultural Education. 59(4), 15-35.

Roberts, R., & Edwards, M. C. (2020). Overcoming resistance to service-learning’s use in the preparation of teachers for secondary agricultural education: A reframing of the method’s diffusion challenges. Journal of International Agricultural and Extension Education, 27(1), 15-33.

Roberts, R.& Robinson, J. S.(2018).The motivational changes preservice agricultural education teachers endure while facilitating quality supervised agricultural experiences: A six-week project-based learning experience. Journal of Agricultural Education, 59(1), 255-270.

Roberts, R.,& Stair, K. S., Granberry, T. (2020). Images from the trenches: A visual narrative of the concerns of preservice agricultural education teachers.

Journal of Agricultural Education, 61(2), 324-338.

Roberts, R. W. (1957). Vocational and practical arts education: History, development, and principles. Harper and Brothers.

Roberts, T. G., & Ball, A. L. (2009). Secondary agricultural science as content and context for teaching. Journal of Agricultural Education, 50(1), 81-91.

Robles, M. M. (2012). Executive perceptions of the top soft skills needed in today’s workplace. Business Communication Quarterly75(4), 453-465.

Saldaña, J. (2015). Thinking qualitatively: Methods of mind. Sage.

Salevouris, M. J., & Furay, C. (2015). The methods and skills of history: A practical guide (4th ed.). John Wiley and Sons, Inc.

Sproull, B. (2001). Process problem solving: A guide for maintenance and operations teams. Productivity Press.

Sternberg, R. J. (1981). Intelligence and no entrenchment. Journal of Educational Psychology73(1), 1-16.

Stimson, R. W. (1911). The vocational agricultural school. With special emphasis on part-time work in agriculture. University of Chicago Press.

Stimson, R. W. (1919). Vocational agricultural education by home projects. Macmillan.

Talbert, B. A., Vaughn, R., Croom, D. B., & Lee, J. S. (2007). Fundamentals of agricultural education (2nded.).The Interstate Printers & Publishers, Inc.

Torres, R. M., & Cano, J. (1995a). Examining cognition levels of students enrolled in a college of agriculture. Journal of Agricultural Education, 36(1), 46-54.

Torres, R. M., & Cano, J. (1995b). Increasing thinking skill through HOT teaching. The Agricultural Education Magazine, 68(6), 8-9.

Ulmer, J. D., & Torres, R. M. (2007). A comparison of the cognitive behaviors exhibited by secondary agriculture and science teachers. Journal of Agricultural Education48(4), 106-116.

U.S. Department of Education. (2001). The condition of education, 2001. Author.

Zimmerman, B. J., & Risemberg, R. (1997). Self-regulatory dimensions of academic learning and motivation. In G. D. Phye (Ed.), The educational psychology series. Handbook of academic learning: Construction of knowledge (pp. 105-125). Academic Press.

Warren English, C., Alston, A. J., Graham, A. & Roberts, R. (2018). An analysis of North Carolina superintendents’ views regarding the presence of future-ready graduate attributes within the instructional environment. Journal of Southern Agricultural Education Research, 68(1), 1-15.

Whewell, W. (1840). The philosophy of inductive sciences. Parker.

Prioritizing the Professional Development Needs of First-Year School-Based Agricultural Education Teachers Regarding Career Development Events

Christopher J. Eck, Clemson University,

J. Shane Robinson, Oklahoma State University,

Robert Terry Jr., Oklahoma State University,

PDF Available


Identification of the professional development needs of secondary school teachers is critical to improve teacher capacity. Inservice and preservice school-based agricultural education (SBAE) teachers need a broad spectrum of professional development to be prepared for the variety of duties and expectations demanded of the position. This study used the Borich needs assessment model to identify and prioritize the professional development needs of first-year SBAE teachers in Oklahoma regarding their interest in and competence to train students in the various state-specific career development events (CDEs). Thirty-seven first-year SBAE teachers in Oklahoma participated in the study. The findings revealed that the teachers deemed all 27 CDEs to be important; although, they were not necessarily interested in teaching them all. The CDEs with the highest priority included Livestock Evaluation, Veterinary Science, Meats Evaluation and Technology, Food Science and Technology, and Agricultural Sales. As the agricultural industry and the educational sphere continue to change, so too must those who endeavor to serve in communities and teach agricultural education. As such, identifying, prioritizing, and ultimately addressing the needs of SBAE teachers must be ongoing and sustained over time.


Identifying the professional development needs of secondary school teachers is critical for a multitude of reasons (National Council for the Accreditation of Teacher Education [NCATE], 2010). The identification of needs can improve the capacity of inservice teachers and empower teacher preparation programs to improve future teacher readiness (NCATE, 2010). The same is true for SBAE teachers. Shultz et al. (2014) recognized the need to provide a broad spectrum of skill and knowledge development for both inservice and preservice SBAE teachers due to the vast array of duties and expectations associated with the position (Eck, Robinson, Ramsey, & Cole, 2019; Roberts & Dyer, 2004). Terry and Briers (2010) indicated 21 different roles associated with being a SBAE teacher in addition to the three components identified by the National FFA Organization (2015), i.e., classroom/laboratory instruction, FFA, and supervised agricultural experiences (SAE). These various roles help to provide career awareness to secondary students while also preparing them for their future (Wardlow & Osborne, 2010).

“Agricultural education prepares students for successful careers and a lifetime of informed choices in the global agriculture, food, fiber, and natural resources systems [AFNR]” (The National Council for Agricultural Education, 2012, para. 3). To help facilitate this mission, national AFNR content standards (The National Council for Agricultural Education, 2015) were developed to provide rigorous curricular focus associated with the eight career clusters. These standards were not only intended for classroom instruction but instead were designed to impact all components of a complete program (The National Council for Agricultural Education, 2015).

SBAE exists, in part, to educate and develop students for careers in the agricultural industry (Roberts & Ball, 2009). Fortunately, SBAE teachers can expose students to various agricultural careers through the FFA (Lundry et al., 2015). In particular, SBAE teachers prepare students in a variety of career development events (CDEs), which allow students to take the learning acquired in the classroom and apply it in a competitive setting (Croom et al., 2009; National FFA Organization, 2019). Therefore, assessing teachers’ ability to prepare students in CDEs is an important component worthy of investigation (Terry & Briers, 2010).

CDEs “develop college and career readiness skills” (National FFA Organization, 2019, para. 1) and provide students with an opportunity to apply practical knowledge learned through classroom instruction in challenging, real-world situations (Beekley & Moody, 2002). In addition to content knowledge, critical thinking and problem-solving skills are developed through the preparation and participation in CDEs (Phipps et al., 2008). The development of these additional skills and opportunities presented through CDE participation can ultimately lead to students making better, more informed decisions about their future careers (Talbert & Balschweid, 2006), which can lead to gainful employability (Connors & Mundt, 2001).

For CDEs to be transformative, however, SBAE teachers must be able to provide the necessary training to prepare students for such events. In Oklahoma, the majority of SBAE teachers typically prepare five or fewer teams; although, some prepare as many as 10 teams for the Oklahoma interscholastic event (Lundry Ramsey, Edwards, & Robinson, 2015). Regardless of the number of teams trained, the majority of SBAE teachers prepared teams for CDEs in which they had previous experience (Lundry et al., 2015). Therefore, understanding the degree to which SBAE teachers acquire the knowledge and skills necessary to prepare CDE teams is imperative.

Multiple opportunities exist for SBAE teachers to develop the knowledge and skills necessary to prepare students for CDEs. Traditional teacher preparation programs, which include coursework relative to teaching and learning, content area specific courses, and a student teaching internship (NCATE, 2010), are one way to obtain the expertise necessary to prepare students to compete across a wide variety of CDEs. Traditionally prepared SBAE teachers, who have completed an agricultural education degree through a bachelor’s or master’s degree program along with student teaching, commonly have the advantage of agricultural content-specific coursework, unlike teachers who are alternatively certified (Robinson & Edwards, 2012). However, research suggests teachers who are alternatively certified can be valuable assets to the school, bringing extensive professional experience into the classroom (Ballou, & Podgursky, 1998; Johnson et al., 2005).   

Teachers also develop their knowledge and skills by participating in professional development programs. Roberts and Dyer (2004) identified SBAE teachers have an elevated need for professional development in CDEs regardless of certification pathway. Additionally, Clemons et al. (2018) stated, “the need for focused professional development is vital to the continued success of [SBAE] and teacher growth” (p. 87). Ideally, SBAE teachers should be assessed early and often to determine their learning needs and deficiencies (Birkenholz & Harbstreit, 1987). Unfortunately, however, professional development frequently relies on a presenter telling people what they should know or do (Sharma, 2016) instead of identifying the needs of the audience.

The majority of FFA chapters in Oklahoma participate in CDEs (Lundry et al., 2015). The state-level CDE competition is held during the Oklahoma State University (OSU) interscholastic event each Spring semester on the campus of OSU. In 2019, 428 teams participated in 27 different CDEs (Oklahoma Interscholatics, 2019). CDEs range from single-member events to seven-person teams (National FFA Organization, 2019). The number of Oklahoma teams that participated in each event in 2019 are identified in Table 1 in descending order.

Table 1

Participation for the 2019 OSU Interscholastic Career Development Events (N = 428 Teams)

Livestock Evaluation   62
Land Judging36
Veterinary science31
Agricultural Communications28
Food Science and Technology   27
Agricultural Technology and Mechanical Systems   26
Meats Evaluation and Technology20
Farm and Agribusiness Management   19
Milk Quality and Products18
Dairy Cattle Evaluation and Management14
Horse Evaluation   12
Environmental and Natural Resources   11
Soil and Water Conservation   10
Employment Skills 10
Rangeland Judging9
Homesite Judging   8
Poultry Evaluation7
Turfgrass Management7
Agricultural Issues Forum3
Marketing Plan3
Agricultural Sales2

CDEs “serve as an outgrowth of instruction in the agricultural education classroom for FFA members in grades 7 to 12” (National FFA Organization, 2019, para. 1) and align with the National Agricultural, Food, and Natural Resources (AFNR) Career Cluster Content Standards (National FFA Organization, 2019). Eight career clusters make up the AFNR Content Standards, i.e., power, structural and technical systems, plant systems, natural resource systems, food products and processing systems, environmental service systems, biotechnology systems, animal systems, and agribusiness systems (The National Council for Agricultural Education, 2015). Ultimately, CDEs are aligned and implemented in SBAE programs to further the agricultural education mission which states, “Agricultural education prepares students for successful careers and a lifetime of informed choices in the global agriculture, food, fiber, and natural resources systems” (The National Council for Agricultural Education, 2012, para. 3). 

CDEs serve as a vehicle for the development of critical thinking skills and collaboration while furthering students’ interest in AFNR careers (National FFA Organization, 2019). For SBAE to continue to strive to meet its demand (Roberts & Ball, 2009), SBAE teachers must be prepared and ready to rise to the challenge, preparing students for college and careers. Therefore, understanding SBAE teachers’ deficiencies related to preparing students for CDEs is a crucial task. This task becomes more daunting, considering the diverse needs of SBAE teachers based on the pathway to certification. In particular, because first-year SBAE teachers have been known as needing the greatest amount of professional development (Layfield & Dobbins, 2002), they served as the target population for this study.

Theoretical/Conceptual Framework

The theoretical framework for this study was based on the concept of teacher self-efficacy (Bandura, 1977). Self-efficacy refers to an individual’s belief associated with achieving a desired goal or task (Bandura, 1997). Bandura (1977) identified four types of experiences impacting self-efficacy, with the greatest predictor being mastery experiences. Therefore, SBAE teachers who have experience in a given CDE might feel more efficacious in preparing students to compete in the same event than those without experience. In this study, first-year SBAE teachers in Oklahoma provided their self-perceived competency as it relates to preparing students for each CDE. Unfortunately, novice teachers have very few, if any, mastery experiences related to making students for a CDE. Therefore, they commonly rely on vicarious experiences (Bandura, 1977), which are the second greatest predictor of self-efficacy and refer to the observation of a specific skill or behavior (Bandura, 1977). Influenced by the work of Bandura (1977), teacher self-efficacy refers to an individuals’ ability to engage students in the learning environment and improve their learning outcomes (Tschannen-Moran et al., 1998). Students who learn from teachers high in teacher self-efficacy have been shown to outperform those who learn from teachers lower in teacher self-efficacy (Henson, 2001). Teacher self-efficacy is linked to increased teacher performance and career sustainability (Tschannen-Moran et al., 1998), leading to the importance of this line of inquiry with first-year SBAE teachers, as recruitment and retention continue to be a challenge (Eck & Edwards, 2019).

Purpose of the Study

The purpose of this study was to identify the CDEs in greatest need of professional development according to first-year SBAE teachers in Oklahoma. Four research objectives guided the study:

  1. Describe the personal and professional characteristics (i.e., sex, gender, pathway to certification, highest degree earned, size of program and past CDE experience) of first-year SBAE teachers in Oklahoma,
    1. Identify first-year SBAE teacher’s competency for each of the Oklahoma CDEs,
    1. Identify SBAE teachers’ interest to prepare teams for each of the CDEs, and
    1. Prioritize the CDEs, according to first-year SBAE teachers, in need of professional development using the Borich needs assessment model.

Methods and Procedures

The population of interest for this descriptive pilot study was first-year SBAE teachers in Oklahoma (N = 40) during the 2019 to 2020 school year. A time and place sampling method (Oliver & Hinkle, 1982) was employed during a required new teacher training workshop for SBAE teachers, hosted by Oklahoma Career and Technical Education staff. All (N = 40) first-year SBAE teachers in Oklahoma were required to attend the workshop. Of the 40 first-year SBAE teachers in Oklahoma, 39 were present, and 37 completed the instrument by successfully responding to all questions, resulting in a 92.5% response rate. The instrument was designed to assess SBAE teachers’ competency and interest of the 27 CDEs in Oklahoma following the Borich Needs Assessment Model (Borich, 1980). “The needs assessment model is essentially a self-evaluative procedure which relies on teachers’ judgements about their own performances” (Borich, 1980, p. 42). The model allows researchers to determine if a discrepancy exists between the two poles indicated in the instrument (Borich, 1980). This study sought to determine the discrepancy between teachers’ self-perceived interest and competency to train students in various CDEs. The resulting score will be used to identify professional development opportunities for first-year SBAE teachers in Oklahoma, as discrepancy scores with the greatest positive rank identify the highest priority for professional development (Borich, 1980). The model was utilized to measure the teachers’ interest and competence in preparing students for CDEs and preparing them for careers. To determine where deficiencies existed, Borich’s (1980) mean weighted discrepancy scores (MWDS) was employed. Specifically, the mean weighted competence rating was subtracted from the mean weighted importance rating to determine a discrepancy score. Then, every discrepancy score was multiplied by the mean importance rating to produce a weighted discrepancy score. Finally, the weighted discrepancy scores were totaled and divided by the number of respondents (n = 37) to produce a mean weighted discrepancy score (MWDS). Finally, all MWDS of each item was ranked from high to low to determine the CDEs in greatest need of professional development.

Although Oklahoma FFA conducts 29 state CDEs, only 27 were chosen for this study. The two CDEs omitted (Agricultural Education and the Freshman Agriscience Quiz Bowl) were excluded from the study due to not containing specific content knowledge related to agricultural, food, and natural resource (AFNR) standards. The 27 CDEs included in the instrument were: Agricultural Communications, Agricultural Issues Forum, Agricultural Technology and Mechanical Systems, Agricultural Sales, Agronomy, Dairy Cattle Evaluation and Management, Electricity, Employment Skills, Entomology, Environmental and Natural Resources, Farm and Agribusiness Management, Floriculture, Food Science and Technology, Forestry, Homesite Judging, Horse Evaluation, Land Judging, Livestock Evaluation, Marketing Plan, Meats Evaluation and Technology, Milk Quality and Products, Nursery/Landscape, Poultry Evaluation, Soil and Water Conservation, Rangeland Judging, Turfgrass Management, and Veterinary Science. In addition to the 27 competency and interest assessments of CDEs, participants were asked to identify their intent to prepare teams for each of the 27 CDEs, along with six demographic questions aimed to describe the participants (i.e., sex, age, pathway to certification, highest degree earned, program size, and past experiences related to CDEs). Ultimately, the population of interest for this instrument includes all SBAE teachers; therefore, the sample of first-year SBAE teachers served as an appropriate pilot group.

The instrument was developed in Qualtrics and distributed electronically to first-year SBAE teachers during their new teacher inservice at the state career and technical education office in [City] on August [add date]. Before delivery of the instrument, the research team, consisting of two faculty members and one graduate student in the [Department], evaluated the instrument for face and content validity. The team has more than 50 years of experience teaching agricultural education at the secondary (which included preparing students participating in CDEs) and higher education levels, and each helps prepare students to teach in SBAE programs. Also, all team members have conducted numerous quantitative studies, and two of the team members have used the Borich (1980) model extensively in previous research, qualifying the team as able to assess the face and content validity of the instrument. After review, the instrument was deemed acceptable for the pilot stage of this study.

The instrument complexity, length, and mobile device compatibility were assessed based on the recommendations of Dillman, Smyth, and Christian (2014). The purpose of the study was explained to the participating teachers before they were provided informed consent forms, a QR code, and a weblink to participate on their devices.

After data collection was completed, data were transferred from Qualtrics to the Statistical Program for Social Sciences (SPSS), Version 23, and Microsoft Excel for analysis. Personal and professional characteristics were analyzed in SPSS using descriptive statistics to explain the composition of first-year SBAE teachers in Oklahoma. Mean scores were calculated for interest and competence on each of the 27 CDEs to determine the overall rating from participants. Interest was measured on a four-point scale, where 1 = extremely uninterested, 2 = somewhat uninterested, 3 = somewhat interested, and 4 = extremely interested. Similarly, competence was measured on a four-point scale, where 1 = extremely incompetent, 2 = somewhat incompetent, 3 = somewhat competent, and 4 = extremely competent. For the MWDS analysis, the Excel MWDS calculator developed by McKim and Saucier (2011) was used to determine the professional development needs of first-year SBAE teachers in Oklahoma.


The first research objective sought to describe the personal and professional characteristics of first-year SBAE teachers in Oklahoma. Table 2 displays those characteristics including sex, age, pathway to certification, highest degree earned, program size, and past experiences related to CDEs. First-year SBAE teachers for the 2019 to 2020 school year in Oklahoma ranged in age from 21 to 61 years old, with just over one-half being female (51.4%). Over one-third (f = 14, 37%) entered the profession through a non-traditional certification route; however, 62.2% (f = 23) were traditionally certified, indicating they had completed an agricultural education bachelor’s or master’s degree program. Nearly 92% (f = 34) of the participants had previous experience (i.e., competed as a student in 4H or FFA, prepared a team, participated in professional development, or completed coursework) related to livestock evaluation. More than one-half (f = 19, 51%) had experiences in agricultural communications (see Table 2).

Table 2

Personal and Professional Characteristics of First-Year SBAE Teachers in Oklahoma (n = 37)

 Did not respond 12.7
Age21 to 251848.6
 26 to 3038.1
 31 to 35513.5
 36 to 4038.1
 41 to 50513.5
 51 to 6012.7
 60 +12.7
 Did not respond12.7
Certification PathwayAgEd BS1951.4
 AgEd MS410.8
 Alternatively Certified924.3
 Emergency Certified410.8
 Not Certified12.7
Highest Degree EarnedBachelor’s Degree2875.7
 Master’s Degree924.3
 Doctoral Degree00.0
Program Size (# of students)1 to 2000.0
 21 to 40821.6
 41 to 601129.7
 61 to 8025.4
 81 to 100718.9
 100 to 15038.1
 151 to 20012.7
 201 to 25025.4
 Did not respond25.4
Past CDE ExperienceLivestock Evaluation   3491.9
 Agricultural Communications1951.4
 Agricultural Sales1643.2
 Agricultural Technology and Mechanical
 Land Judging1335.1
 Meats Evaluation and Technology1232.4
 Veterinary Science1232.4
 Horse Evaluation   1129.7
 Dairy Cattle Evaluation and Management1027.0
 Food Science and Technology   1027.0
 Milk Quality and Products1027.0
 Employment Skills 924.3
 Agricultural Issues Forum821.6
 Farm and Agribusiness Management   821.6
 Environmental and Natural Resources   718.9
 Poultry Evaluation718.9
 Soil and Water Conservation   718.9
 Marketing Plan513.5
 Rangeland Judging513.5
 Homesite Judging   25.4
 Turfgrass Management25.4

Additionally, first-year SBAE teachers in Oklahoma were asked to identify their intent to prepare a team for each of the 27 CDEs during the 2019 to 2020 school year. These intentions are displayed in Table 3 in order of the highest intended participation. Livestock Evaluation (f = 28), Agricultural Communications (f = 19), Veterinary Science (n = 15), Land Judging (f = 13), and Agricultural Technology and Mechanical Systems (f = 10) were the top five CDEs for which first-year teachers intended to train. None of the teachers intended to prepare a Homesite Evaluation or Soil and Water Conservation team (see Table 3).  

Table 3

First Year Oklahoma SBAE Teachers Intent to Prepare CDE Teams (n = 37)

Livestock Evaluation   2875.7
Agricultural Communications1951.4
Veterinary Science1540.5
Land Judging1335.1
Agricultural Technology and Mechanical Systems   1027.0
Food Science and Technology   924.3
Meats Evaluation and Technology924.3
Agricultural Issues Forum718.9
Agricultural Sales718.9
Environmental and Natural Resources   718.9
Employment Skills 616.2
Poultry Evaluation616.2
Rangeland Judging616.2
Dairy Cattle Evaluation and Management513.5
Farm and Agribusiness Management   513.5
Horse Evaluation   513.5
Milk Quality and Products513.5
Marketing Plan410.8
Turfgrass Management38.1
Homesite Judging   00.0
Soil and Water Conservation   00.0

The second and third research questions sought to determine the interest and competency levels of first-year SBAE teachers in Oklahoma on a four-point scale of agreement. Livestock Evaluation resulted in the highest mean score for both CDE interest and competency of first-year SBAE teachers, and the Homesite CDE received the lowest mean scores in both areas (see Table 4). Participants deemed they were somewhat interested in Livestock Evaluation and Agricultural Communications, as evidenced by a mean score of 3.0 or greater. The remaining 25 CDEs were in the somewhat uninterested range. Regarding their competence, first-year SBAE teachers perceived themselves to be somewhat to extremely incompetent in all CDE areas except for livestock evaluation (M = 3.07, SD = .79), where they deemed themselves somewhat competent.

The fourth research question sought to prioritize the CDEs, as perceived by first-year teachers, in need of professional development using the Borich (1980) needs assessment model. Livestock Evaluation (MWDS = 3.73) was the CDE possessing the greatest need for professional development (see Table 4). Three other CDEs had an MWDS exceeding 3.0, including Veterinary Science (MWDS = 3.62), Meats Evaluation and Technology (MWDS = 3.34), and Food Science and Technology (MWDS = 3.16). In contrast, two CDEs, Dairy Cattle Evaluation and Management (MWDS = .98) and Electricity (MWDS = .96), had MWDS scores less than 1.0.  

Table 4

CDE interest, Competency, and Mean Weighted Discrepancy Scores of First-Year SBAE Teachers in Oklahoma (n = 37)

CDEInteresta  M                  SD Competencyb M                SD MWDSc
Livestock Evaluation    3.54 .61 3.07 .79 3.73
Veterinary Science 2.97 1.04 2.17 .91 3.62
Meats Evaluation and
 2.81 .78 2.07 .96 3.34
Food Science and
 2.82 .93 2.03 .85 3.16
Agricultural Sales 2.84 .93 2.34 .97 2.84
Farm and Agribusiness
 2.73 .96 2.20 1.03 2.58
Employment Skills  2.92 .97 2.59 .91 2.50
Agricultural Issues Forum 2.62 1.06 2.07 .98 2.48
 3.03 .83 2.83 .83 2.21
Environmental and Natural
 2.46 1.04 1.93 .91 2.19
Milk Quality and Products 2.68 .92 2.30 .88 2.17
Marketing Plan 2.57 .87 2.13 .94 2.15
Land Judging 2.46 .96 2.03 .85 1.99
Agricultural Technology
     and Mechanical Systems   
 2.53 1.06 2.17 .95 1.83
Floriculture 2.51 .99 2.20 1.10 1.83
Rangeland Judging 2.14 1.11 1.63 .93 1.73
Turfgrass Management 2.14 .98 1.67 .92 1.67
Soil and Water Conservation    2.19 1.05 1.77 1.01 1.66
Agronomy 2.19 .95 1.86 .85 1.65
Forestry 2.24 1.04 1.87 .90 1.64
Poultry Evaluation 2.16 1.07 1.73 .83 1.64
Horse Evaluation    2.33 1.12 1.97 1.22 1.62
Entomology 2.25 1.05 1.90 1.03 1.50
Nursery/Landscape 2.19 1.02 1.90 .96 1.42
Homesite Judging    1.78 .95 1.52 .79 1.06
Dairy Cattle Evaluation and
 2.27 .99 2.27 1.08 .98
Electricity 2.08 .92 2.00 .95 .96

Note. aInterest items were on a 4-point scale of agreement, where 1 = Extremely uninterested, 2 = Somewhat uninterested, 3 = Somewhat interested, 4 = Extremely interested. bCompetency items were on a 4-point scale of agreement, where 1 = Extremely incompetent, 2 = Somewhat incompetent, 3 = Somewhat competent, 4 = Extremely competent. cMWDS = Mean Weighted Discrepancy Score.


This study sought to identify the professional development needs of first-year SBAE teachers in Oklahoma, based on their interest and competence as it relates to preparing students for CDEs. The findings of this study resulted in multiple conclusions. Based on the positive MWDS, first-year SBAE teachers in Oklahoma deem all 27 CDEs to be of value; although, they were not necessarily interested in preparing student teams for all the CDEs. As the majority of SBAE teachers in Oklahoma typically prepare five or fewer teams (Lundry et al., 2015), teachers not having an interest in preparing students for all CDEs is realistic.

First-year teachers’ interest in CDEs exceeds their self-perceived competence to prepare students for them. Except for Dairy Cattle Evaluation and Management, which had the same ratings (M = 2.27) for interest and competence, first-year teachers rated 26 of the 27 CDEs higher on the interest scale than on the competence scale. This finding is consistent with previous research using Borich’s (1980) needs assessment model (Radhakrishna & Bruening, 1994; Robinson et al., 2007).

The CDEs with the greatest MWDS are the highest priority (Borich, 1980) for first-year SBAE teachers in Oklahoma, including Livestock Evaluation, Veterinary Science, Meats Evaluation and Technology, Food Science and Technology, and Agricultural Sales. Regarding the teachers’ past CDE experiences, these five were some of the highest regarding their participation. Specifically, 92% of these teachers had participated in the Livestock Evaluation CDE, giving support to teachers’ perceived mastery and vicarious experiences (Bandura, 1977; Tschannen-Moran et al., 1998). Such experiences play a significant role in motivating teachers to continue learning about these content areas and preparing students to participate in them. Ultimately, these five CDEs should be given the highest priority for future professional development offerings for SBAE teachers in Oklahoma.

Professional development related to CDEs in Oklahoma based on the findings of this study provides SBAE teachers an opportunity to increase their self-efficacy through mastery and vicarious experiences (Bandura, 1977). This investment in additional purposeful professional development aims to improve the individual’s teacher self-efficacy for performing tasks related to and within these CDEs. Additionally, CDE participation is intended to align with AFNR Career Cluster Content Standards being taught within the SBAE program (The National Council for Agricultural Education, 2015); therefore, the increased self-efficacy serves the teacher in multiple capacities. Teachers have the opportunity to enhance their ability to prepare students for CDEs and careers while also providing students an opportunity to acquire over 20 additional workplace skills through CDE participation (Lundry et al., 2015). 


Agricultural education faculty at OSU should look for ways to incorporate the top five CDEs (i.e., Livestock Evaluation, Veterinary Science, Meats Evaluation and Technology, Food Science and Technology, and Agricultural Sales) into the existing curriculum and plan of study. In particular, the findings should be shared with faculty who teach courses in these areas, and attempts should be made to highlight these CDEs in classes with students whenever possible. Also, students should be encouraged to volunteer for the Oklahoma FFA Interscholastic Event held at Oklahoma University each Spring by participating in a CDE area in which they lack competence and experience.

The findings of this study should also be shared with Career and Technical Education supervisors and other interested personnel who provide professional development to first-year SBAE teachers. Specifically, those delivering professional development sessions should be encouraged to focus first on the content areas involving Livestock Evaluation, Veterinary Science, and Meat Evaluation and Technology; these CDEs had the highest MWDS and therefore demand the greatest attention related to professional development in Oklahoma. Further, additional professional development for first-year teachers in Oklahoma should be considered for the remaining CDEs with elevated MWDS once the top five have been satisfied. Additions to pre-service agricultural education teacher preparation coursework focused on commonly identified CDE needs of SBAE teachers would help to further the self-efficacy of pre-service teachers as they prepare to enter the profession. These professional development opportunities could occur as ongoing workshops facilitated by content experts (i.e., university faculty or in-service SBAE teachers).

Considering recommendations for research, this study should be replicated for all SBAE teachers in Oklahoma (N = 454) (Oklahoma Career Tech, 2019), as the use of first-year SBAE teachers was intended as a pilot group for the instrument. Agricultural education faculty in other states should consider replicating this study to determine the professional development needs of their SBAE teachers related to CDEs. Replication of this study should be conducted with pre-service teachers to determine their CDE deficiencies. Understanding these gaps might allow teacher educators to advise students differently regarding their plans of study or include pertinent content related to CDEs in their existing courses and agricultural education teacher preparation programs.


The needs of SBAE teachers are diverse when considering career tenure and pathway to certification. Therefore, the demand to increase the development of teacher self-efficacy is pertinent (Eck et al., 2019; Roberts & Dyer, 2004; Shultz et al., 2014). Identifying and meeting the needs of SBAE teachers must be ongoing and sustained over time. Although Livestock Evaluation was identified as the CDE in which respondents had the most previous experience, it was still considered as the highest priority for first-year SBAE teachers in Oklahoma. Additionally, Livestock Evaluation had the greatest number of teams participate in a given year at the Oklahoma State FFA CDE Interscholastic (see Table 1) (Oklahoma Interscholatics, 2019). Furthering the understanding of first-year SBAE teachers in Oklahoma provides stakeholders an opportunity to meet the imperative task of preparing them to meet the demand highlighted by Roberts and Ball (2009) who advocated for developing students for positions within the agricultural industry, with AFNR career exploration through CDEs at the state and national levels (National FFA Organization, 2019). The development of purposeful professional development will allow SBAE teachers an opportunity to increase their self-efficacy (Bandura, 1977), as their participation in such programs serves as an investment in their education, leading to improved competence in preparing students for CDEs.


Bandura, A. (1977). Social Learning Theory. Prentice-Hall.

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory.

Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman.

Birkenholz, R. J., & Harbstreit, S. R. (1987). Analysis of the in-service needs of beginning
            vocational agriculture teachers. The Journal of the American Association of Teacher
            Educators in Agriculture, 28
(1), 41–49.

Ballou, D., & Podgursky, M. (1998). Teacher recruitment and retention in public and private

            schools. Journal of Policy Analysis and Management, 17(3), 393–417.

Beekley, B., & Moody, L. (2002). Career development events: An example of authentic learning.
            The Agricultural Education Magazine, 75(1), 16–17.

Borich, G. D. (1980). A needs assessment model for conducting follow-up studies. Journal of
            Teacher Education, 31
(3), 39–42.

Clemons, C. A., Heidenreich, A. E., & Lindner, J. R. (2018). Assessing the technical expertise
            and content needs of Alabama agriscience teachers. Journal of Agricultural Education,
(3), 87–99.

Connors, J. J., & Mundt, J. P. (2001). Experiential education and career development events. The Agricultural Education Magazine, 73(6), 6–7.

Croom, B., Moore, G. E., & Armbruster, J. (2009). An examination of student participation in
            national FFA career development events. Journal of Southern Agricultural Education
            Research, 59
(1), 109–124.

Dillman, D. A., Smyth, J. D., & Christian, L. M. (2014). Internet, phone, mail, and mixed mode
            surveys: The tailored design method
(4th ed.). John Wiley & Sons Inc.

Eck, C. J., Robinson, J. S., Rmasey, J. W., & Cole, K. L. (2019). Identifying the characteristics  
            of an effective agricultural education teacher: A national study. Journal of Agricultural  
            Education, 60
(4), 1–18. doi:10.5032/jae.2019.04001.

Henson, R. K. (2001). Teacher self-efficacy: Substantive implications and measurement dilemmas. Invited Keynote Address. Paper presented at the Annual Meeting of the Educational Research Exchange. San Antonio, TX.

Johnson, S. M., Birkeland, S. E., & Peske, H. G. (2005). Life in the fast track: How states seek to

            balance incentives and quality in alternative teacher certification programs. Educational

            Policy, 19(1), 63–89.

Layfield, K. D., & Dobbins, T. R. (2002). Inservice needs and perceived competencies of South
            Carolina agricultural educators. Journal of Agricultural Education, 43(4), 46–55.

Lundry, J., Ramsey, J. W., Edwards, M. C., & Robinson, J. S. (2015). Benefits of career development events as perceived by school-based, agricultural education teachers. Journal of Agricultural Education, 56(1), 43–57.

McKim, B. R., & Saucier, P. R. (2011). An Excel-based mean weighted discrepancy score
            calculator. Journal of Extension, 49(2).

National Council for the Accreditation of Teacher Education (NCATE). (2010). The CAEP standards.

National FFA Organization. (2015). Agricultural education. Author.

National FFA Organization. (2019). Career and leadership development events.

National FFA Organization. (2019). Career and leadership development events.

Oklahoma Interscholatics. (2019). 2019 CDE Results. Retrieved from

Oliver, J. D., & Hinkle, D. E. (1982). Occupational education research: Selecting statistical procedures. Journal of Studies in Technical Careers, 4(3), 199–208.

Phipps, L. J., Osborne, E. W., Dyer, J. E., & Ball, A. L. (2008). Handbook on agricultural education in public schools (6th ed.). Thomson Delmar Learning.

Radhakrishna, R. B., & Bruening, T. H. (1994). Pennsylvania study: Employee and student perceptions of skills and experiences needed for careers in agribusiness. NACTA Journal, 38(1), 15–18.

Roberts, T. G., & Ball, A. L. (2009). Secondary agricultural science as a content and context for
 teaching. Journal of Agricultural Education, 50(1), 81–91.

Roberts, T. G., & Dyer, J. E. (2004). Characteristics of effective agriculture teachers. Journal of Agricultural Education, 45(4), 82–95.

Robinson, J. S., Garton, B. L., & Vaughn, P. R. (2007). Becoming employable: A look at graduates’ and supervisors’ perceptions of the skills needed for employability. NACTA Journal, 51(2), 19–26.

Robinson, J. S., & Edwards, M. C. (2012). Assessing the teacher self-efficacy of agriculture instructors and their early career employment status: A comparison of certification types. Journal of Agricultural Education, 53(1), 150–161.

Sharma, A. (2016). Professional development of teachers and teacher educators. Indian Journal of Applied Research, 6(4), 24–43.

Shultz, M. J., Anderson, R. G., Shultz, A. M., & Paulsen, T. H. (2014). Importance and
            capability of teaching agricultural mechanics as perceived by secondary agricultural
            educators. Journal of Agricultural Education, 55(2), 48-65.

Oklahoma Career Tech. (2019). Agricultural education: Contact us.

Talbert, B. A., & Balschweid, M. A. (2006). Career aspirations of selected FFA members.
            Journal of Agricultural Education, 47(2), 67–80.

Terry, R., Jr., & Briers, G. E. (2010). Roles of the secondary agriculture teacher. In R. Torres, T.
            Kitchel, & A. Ball (Eds.), Preparing and advancing teachers in agricultural education
            (pp. 86-98). Curriculum Materials Service, The Ohio State University.

The National Council for Agricultural Education. (2012). Agricultural education.

The National Council for Agricultural Education. (2015). National AFNR content standards.

Tschannen-Moran, M., Woolfolk Hoy, A., & Hoy, W. K. (1998). Teacher efficacy: Its meaning
            and more. Review of Education Research, 68(2), 202–248.

Wardlow, G. W., & Osborne, E. W. (2010). Philosophical underpinnings in agricultural
            education. In R. Torres, T. Kitchel, & A. Ball (Eds.), Preparing and advancing teachers
            in agricultural education
(pp. 16-29). Curriculum Materials Service, The
            Ohio State University.

Assessing Undergraduate Needs Within Online Learning Management Systems in Colleges of Agriculture

Christopher A. Clemons
The internet has served as the basis for online learning for the past 30 years. Learning management systems have become a primary focus of public and private universities as the next generation of college students expect open and unfettered access to their education. The purpose of this Delphi Study was to investigate the instructional needs of undergraduate agriculture students enrolled in online learning environments at a midwestern College of Agriculture. Two research questions guided this investigation, (1) what are the essential components for an effective undergraduate online learning management system and (2) what are stakeholder perceptions of learning management system design, development, coursework, and design themes? Using the Delphi Model for consensus an undergraduate panel (N = 10) was convened to identify the vital components for learning management systems which addressed instructional design, application of course content, and student collaboration education within online learning platforms…

Read More

The Perceived Impact of Life Experiences and Selected Growth Areas Upon the Employability Preparation of Land-Grant College Graduates

Chastity Warren English, Chantel Simpson, & Antoine J. Alston
The purpose of this study was to analyze the perceived impact of life experiences and selected growth areas upon the employability preparation of land-grant college graduates, as observed by employers. The study revealed that a variety of life experiences and experiential learning opportunities, in general, are significant for career success for land-grant college graduates. Further, participants reported that many trends would influence the agricultural industry over the next five to 10 years, such as Digital Agriculture (Precision Agriculture or Big Data), Research and Development, Agricultural Technology, Engineering, and Mechanization, Environment, Globalization, and selected Agribusiness related themes. Recommendations included Land-Grant Colleges considering curriculum and program revisions concerning these trend areas, to better prepare graduates to be future change agents within the global food, agriculture, and renewable natural resources fields.

Read More

Organizational leadership: A philosophical review and proposed model

Kevan W. Lamm, Hannah S. Carter, Alexa J. Lamm, & Nekeisha Randall
Organizational leadership is the foundation of success for mission-driven systems of all sizes. Leading an organization in today’s society requires adaptive and relational skills that meet the demands of complex and changing environments. There is a need for a theoretically-based model specifically designed for organizational leadership. The purpose of this article was to address this gap by proposing a model of organizational leadership that expands upon previous recommendations in the literature and specifically identifies 11 areas synthesized from previous taxonomic recommendations. The organizational leadership conceptual model should provide agricultural leadership educators with a robust framework for the development of adaptive leaders and contextually appropriate leadership curriculum.

Read More

Recruiting Minority Students into Secondary School Agriculture Education Programs: Barriers, Challenges, and Alternatives

K. S. U. Jayaratne, Travis Park, & Jason Davis
The United States population is becoming increasingly diverse, and agricultural education should represent that diversity. Researchers conducted a Delphi study of 12 exemplary agriculture programs with diverse student populations in North Carolina. After three rounds, consensus was reached about 11 strategies useful in recruiting minority students, including most prominently, (1) making personal connections with potential students, (2) students recruiting their minority friends, (3) minority students recruiting other minority students, (4) showcasing exceptional minorities who have succeeded in the agriculture field, and (5) being yourself and care for your students. The study also identified 12 alternatives helpful in retaining the minority students into another agriculture course or FFA, most prominently, (1) buying-in from friends, (2) talking to minority students already in the program, (3) building teacher and student relationship, (4) creating interest in agriculture subjects, and (5) getting minority students connected and involved.

Read More

Knowledge, Skills, and Competencies Needed by Students with Training in Agricultural and Environmental Practices as Perceived by Local Leaders: A Delphi Study

Sarah Sapp, Andrew C. Thoron, & Eric D. Rubenstein
The purpose of this study was to examine the knowledge, skills, and competencies needed by high school students with coursework in agricultural and environmental practices as perceived by educators and industry members. This study utilized a true Delphi technique in order to obtain the perceptions of the respondents. Respondents indicated 122 items that were important for students to possess with coursework in this area. The top 83 items were reported based upon panel members’ perceived importance of these items. There were three major themes or categories of importance identified by the panel members, which include: life/leadership skills, core subject area knowledge, and competence in production agriculture knowledge/practices…

Read More

Climbing Jacob’s Ladder: A Phenomenological Inquiry to Understand Ugandan Farmers’ Experiences Using Fertilizers

Chandler Mulvaney, Kathleen D. Kelsey, Nicholas E. Fuhrman, & Ronald Lemo
This article examines factors influencing Ugandan subsistence farmers’ adoption or rejection of mineral fertilizers using the theory of planned behavior as a theoretical lens (Ajzen, 2011). We conducted semi-structured interviews with 30 Ugandan farmers in-situ. Participants were criterion selected based on their rate of adoption of fertilizers and membership in farmer groups. We analyzed the interviews following phenomenological research design. Four themes emerged, they were (a) we are better together, working in farmer groups improves outcomes, (b) behavioral change begins within the family and farmer groups, (c) farmers need greater access to agricultural production knowledge and inputs, and (d) changes in farmers’ knowledge leads to intentional behavior changes. The themes were summarized to generate the phenomenological essence of climbing Jacob’s ladder. The factors that influenced fertilizer adoption included being a member of a formally recognized and registered farmer group…

Read More

A Qualitative Analysis of the Challenges and Threats facing Cooperative Extension at the County Level

Lendel Narine, Amy Harder, & Priscilla Zelaya
The Cooperative Extension Service faced many challenges and threats over its history. Persistent internal challenges affecting Extension are communication with stakeholders, high employee turnover, and a marketing deficit. Common external threats included reduced funding, increases in non-traditional audiences, and inadequate facilities. Guided by a needs assessment framework, this study sought to identify the challenges and threats facing the [State] Cooperative Extension Service at the county level. Using a basic qualitative research design, the final reports from the 2016 county program reviews were used as the primary source of data. Results were consistent with the literature and showed persistent challenges facing Extension were staff limitations, marketing and communication ineffectiveness, limited program coverage, inadequate volunteer recruitment, and lack of funding…

Read More

Motivational Factors that Influenced Learner Participation in Supervised Agricultural Experience Programs

Eric D. Rubenstein & Andrew C. Thoron
Supervised Agricultural Experience (SAE) programs are an integral component of school-based agricultural education. However, student participation in SAE has continually decreased since the mid-1980s. Therefore, it was necessary to better understand factors that motivate students to participate in SAE programs. This led to the purpose of this qualitative study, which was to examine motivational factors that influence student participation in SAE. The researchers used the constant comparative analysis method to identify specific motivational factors that influenced SAE participation. The researchers found that participants were motivated by their family’s culture and traditions. Moreover, the student’s participation in the National FFA Organization (FFA), interaction with other FFA members, and recognition through SAE awards structure through FFA motivated students to engage in SAE. Further, the participants in this study were motivated by their personal satisfaction, interest, desire, and goals. The researchers also concluded that the agriculture teacher plays an important role in motivating students through conducting SAE supervision, building lasting relationships with students, and requiring student participation in SAE. Therefore, the researchers recommended that agriculture teachers continue to require every student to conduct an SAE and utilize all available resources to engage students in SAE.

Read More