Category

Research Area

Technical Professional Development Needs of Agricultural Education Teachers in the Southeastern United States by Career Pathway

D. Barry Croom, University of Georgia, dbcroom@uga.edu

Ashley M. Yopp, Florida Department of Education, ashley.yopp@fldoe.org

Don Edgar, New Mexico State University, dedgar@nmsu.edu

Richie Roberts, Louisiana State University, roberts3@lsu.edu

Carla Jagger, University of Florida, carlajagger@ufl.edu

Chris Clemons, Auburn University, cac0132@auburn.edu

Jason McKibben, Auburn University, jdm0184@auburn.edu

O.P. McCubbins, Mississippi State University, am4942@msstate.edu

Jill Wagner, Mississippi Department of Education, am4942@msstate.edu

PDF Available

Abstract

Determining the professional development needs of teachers framed through the national career pathways of agricultural education has become imperative for modern classrooms. Participants in this study were from six Southeastern U.S. states. Most were female educators, with the largest group having teaching experience between 11-20 years. Participants indicated their professional development needs regarding technical content in the seven agricultural education career pathways. Based on the findings, the researchers concluded that participants needed professional development in plant science, followed closely by animal systems. The least beneficial area for professional development was power, structural and technical systems, and food products and processing systems. No differences existed between male and female teachers regarding their technical professional development needs except within the power, structural, and technical pathway. Teachers with less than 10 years of teaching experience reported a greater need for professional development in animal science than their more experienced counterparts. Finally, participants in rural school systems were more likely to desire professional development on natural resources.

Introduction and Review of Literature

Teachers with a high level of content knowledge are better equipped to help their students succeed academically and can be more effective as educators (National Research Council, 2010). The content knowledge held by teachers has been shown to have a statically significant effect on student learning. When content knowledge is of sufficient depth and quality, the impact on student learning has also been positive (Ambrose et al., 2010). As teachers employ high-quality pedagogical strategies, their content knowledge helps students improve knowledge retention and learning transfer (National Research Council, 2010). In agricultural education, teachers need content knowledge of sufficient depth and breadth to meet the current and future demands of the agricultural industry (Solomonson & Roberts, 2022).

Facilitating Understanding

Teachers with quality content knowledge can help students understand the material more deeply and meaningfully. They can explain concepts clearly, provide relevant examples, and confidently answer questions (Driel, 2021; Gess-Newsome et al., 2019). On this point, Harris and Hofer (2011) found that teachers with more content knowledge were more strategic in selecting learning tasks, created more student-oriented learning activities, and were more deliberate in planning lessons. Pursuing this further, Marzano (2017) proposed that teachers with a high level of content knowledge were more capable of helping students detect errors in their reasoning and successfully solve problems in the real world. Teachers often use content knowledge to guide students to examine how new technical content differs from their existing assumptions. This strategy deepens their understanding of key concepts (Dean & Marzano, 2012; Walshaw, 2012). Ambrose (2010) suggested that content knowledge and intellectual proficiency were key drivers in a teacher’s ability to successfully use technical content to facilitate students’ learning in the classroom. 

Adaptability

Adaptability refers to the ability of teachers to modify their teaching strategies to meet the needs of their students. Teachers with content knowledge can be more adaptable in their teaching. They can adjust their teaching strategies and methods to suit the needs of their students and make adjustments when necessary (Bolkan & Goodboy, 2009). Edgar (2012) postulated that the more content knowledge a teacher possesses, the more likely the teacher would employ varying means to teach the content.

Building Credibility

Building credibility as a teacher has become essential to creating a positive and effective learning environment. Teachers with content knowledge are more credible to their students, parents, and colleagues. The rich source of content knowledge that teachers can draw upon in the classroom has become the source of most of this credibility (Forde & McMahon, 2019). They can speak with authority on their subject matter and inspire confidence in their teaching (Bolkan & Goodboy, 2009; Finn et al., 2009).

Effective planning

Teachers with content knowledge can also create more effective lesson plans and assessments and deploy more effective teaching strategies (Orlich et al., 2012; Senthamarai, 2018). For example, they can design activities and assessments that accurately measure student learning and identify the essential concepts students need to learn (Hume et al., 2019). Previous research has suggested that teacher preparation programs must focus more on understanding how teachers acquire technical content knowledge and support their ability to communicate such to their students (Darling-Hammond et al., 2017; Levine, 2008). For this study, technical knowledge referred to the lesson elements designed to provide students with instruction, practice, and review of information regarding the agricultural sciences.

Agricultural Education Teacher Professional Development Systems

Agricultural education teachers who were traditionally certified often receive technical content training during their initial teacher preparation phase. Formal teacher preparation traditionally begins during college coursework (Croom, 2009). During this period, the preservice teachers are inducted into teaching through training and development (Talbert et al., 2022). However, concerns arise about the ability of novice teachers to deliver content-rich lessons (Roberts et al., 2020a, 2020b). Induction follows the competency-building stage, where technical content skill development continues. This phase is where most professional and skill development occurs (Croom, 2009; Fessler & Christensen, 1992).

Professional development usually involves teachers attending professional development sessions based on their perceived technical content deficiencies (Smalley et al., 2019) because teachers sense their need to address technical content deficiencies through continuous professional development (Easterly & Myers, 2019). Despite this desire to develop technical skills, previous research has found a significant gap in agricultural mechanics skill development and other technical agriculture concepts (Easterly & Myers, 2019; Yopp et al., 2020).

Conceptual Framework

Darling-Hammond et al. (2017) proposed that teacher professional development proceeds through seven elements (see Table 1). Effective professional development employs strategies that deepen a teacher’s technical content knowledge. However, this is not enough. Teachers also need sustained professional development activities of sufficient duration that demonstrate how to teach technical content. Darling-Hammond et al. (2017) further proposed that teachers were best served by professional development provided in a social environment, with teachers collaborating and exploring effective instructional models under expert coaches’ guidance. Teachers needed to reflect on their performance to internalize new content knowledge and the strategies for teaching it (Darling-Hammond et al., 2017). This model for professional development begins with developing technical content knowledge (Darling-Hammond et al., 2017). The research team focused on this element of the model because we contended that professional development was grounded in content skill development applied through effective teaching strategies.

Table 1
Elements of Effective Professional Development adapted from Darling-Hammond et al. (2017)

The connection between professional development in the content taught is that both are needed to support effective teaching practices. Teachers who have a strong understanding of the content they are teaching and who have the skills and knowledge needed to teach that content effectively will be better equipped to meet the needs of their students and support their learning (Ambrose et al., 2010; Darling-Hammond et al., 2017). Additionally, ongoing professional development and content training can help teachers stay up-to-date with the latest research-based practices, teaching strategies, and techniques, which can further improve their teaching practices over time (Darling-Hammond et al., 2002).

The agricultural education curriculum covers a range of grade levels and a wide range of technical content. It provides students with knowledge as the content transitions from more basic to advanced skill development through pathway progression. As a result, secondary agricultural education teachers must provide essential knowledge and experiences through advanced instruction in animal science, agricultural engineering, plant and soil science, forestry, natural resources, food processing, and agricultural business management (Talbert et al., 2022). Therefore, secondary students must have the skills to navigate complex problems regarding agriculture, food, and natural resources using good reasoning skills (Figland et al., 2020). Table 2 illustrates the seven areas of agricultural sciences as identified by Advance CTE (2018) and describes the primary learning attribute guiding the learning activities.


Table 2

Agriculture, Food & Natural Resources Career Pathways adapted from Advance CTE (2021)

Purpose and Objectives

This study aimed to investigate the professional development needs of teachers in the Southeast United States regarding the national career pathways for secondary agricultural education. After describing the demographics of teachers who participated in the study, the objectives were to:

  1. Determine the professional development needs of teachers in the Southeastern region of the United States in each of the seven career pathways described by Advance CTE, and
  2. Compare the professional development needs of teachers by gender, years of teaching experience, and community setting.

Methods

This descriptive study sought to determine teacher perceptions regarding professional development needs as framed by the seven career pathways in the agricultural education curriculum. We distributed an instrument Yopp et al. (2020) developed to the target population of agricultural science teachers in six Southeastern states. We used each state’s directory of agricultural science teachers provided by state agricultural education authorities to define the target population.

We developed the questionnaire to address each research objective, including demographic questions. We included 54 Likert-scale items based on seven career pathways developed by Advance CTE (2018): Power and Technical Systems (16 items), Plant Systems (8 items), Natural Resources (4 items), Food Products and Processing (7 items), Environmental Service Systems (5 items), Animal Systems (7 items), and Agribusiness Systems (7 items). We asked participants to rate each item based on its perceived benefit level using this scale: 1 = not beneficial to 5 = essential. We entered data into SPSS® version 24.0 to calculate means and standard deviations. We conducted further analysis through t-tests to determine the significance between variables of interest.

A panel of agricultural teachers with expert knowledge of Advance CTE career pathways examined the questionnaire for content and face validity. Using methods proposed by Creswell and Creswell (2017), we pilot-tested the questionnaire with a sample of 14 pre-service agricultural education teachers using the test re-test method. These test measures yielded Cronbach’s alpha coefficients ranging from .83 to .91 (.70 or higher acceptable range). Our post-hoc reliability analysis of the instrument yielded an overall valid measure (α = .86).

Guided by Dillman et al. (2014) tailored design method, researchers administered the instrument to prospective participants via email using each state’s unique agricultural education teacher listserv. The research team sent an initial invitation to participate in the study. We followed this with a second message to engage participants through an opt-in email directing them to a Qualtrics hyperlink specific to their respective instrument by state. Lastly, the researchers sent two follow-up reminder emails to non-respondents over four weeks. Previous instrument implementation (Yopp et al., 2020) yielded Cronbach’s alpha coefficients ranging from .83 to .91 (Creswell & Clark, 2017). Post-hoc analysis of the instrument based on the population of interest revealed an overall α = .81.

Due to the nature of school-based agricultural education (SBAE) and participants’ ability to respond in a timely manner, early and late responders were evaluated to determine whether response differences occurred (Lindner et al., 2001). Analysis revealed no differences (p = .45) in the population of interest. The final response rate gained was 52.24 %. We anticipated this because decreased response rates to web-based instruments have been reported, especially in recent decades, with the influx of messaging in professional environments. Baruch (1999) noted that rates have declined from approximately 65% to 48% when using electronic survey methods. On this issue, Fraze et al. (2003) found that SBAE teachers responded less frequently to electronic surveys, possibly due to overloaded work schedules.

Findings

Female participants outnumbered male participants in this study, and most participants were still in their first 10 years of teaching. Most participants received formal training to become teachers through a traditional undergraduate program in agricultural education. Many teachers (n = 107) earned their teacher certification through an alternative certification program. The majority of teachers in this study taught in rural schools. Urban agricultural educators made up the smallest percentage of participants in this study. Table 3 provides a detailed representation of the socio-demographic characteristics of participants.

Table 3
Socio-demographic Characteristics of Participants

Objective One: Professional Development Needs in the Seven Career Pathways

Based on data gathered from SBAE teachers and guided by the career pathway to frame the professional development needs, we found that the essential area was that of Plant Systems (M = 4.17, S.D. = .78) and closely followed by Animal Systems (M = 4.14, S.D. = .98). The career pathway with the least beneficial area for professional development was Power, Structural & Technical Systems (M = 3.26, S.D. = 1.02) with Food Products & Processing Systems (M = 3.46, S.D. = 1.02) having a similar response by respondents. The two lowest career pathways also displayed the most variation of answers, as identified by participants. Table 4 shows the professional development needs of agriculture teachers based on career pathways in agricultural education.

Table 4
Professional Development Needs of Agriculture Education Teachers Based on Career Pathways

Note. 1 indicates a scale used from 1 = Not beneficial to 5 = Essential with 3 = No opinion

Objective Two: Professional Development Needs of Teachers by Gender, Years of Teaching Experience, and Community Setting.

The research team collected data on the professional development needs of participants aligned with career pathways and disaggregated based on gender. Two pathway areas had statistically significant differences based on gender. We found significant differences between genders within the Power Technology (p = .000) and Natural Resources (p = .005) pathways. The remaining pathways did not reveal significant differences based on gender. Table 5 displays the needs for professional development in career pathways by gender.

Table 5
Needs for Professional Development in Career Pathways based on Gender

Note. 1 indicates a scale used from 1 = Not beneficial to 5 = Essential with 3 = No opinion

The research team gathered data on the professional development needs of participants aligned with career pathways and analyzed it based on years of experience. The Animal Systems pathway has significant differences based on experience (p = .005). Although the means reported were similar (4.14 and 4.13), the associated standard deviations were dissimilar (1.07 and 0.86), resulting in statistically significant differences between the groups regarding experience. The remaining pathways did not have substantial differences based on experience level. Table 6 details participants’ professional development needs based on years of teaching experience.

Table 6
Needs for Professional Development in Career Pathways Based on Experience

Note. 1 indicates a scale used from 1 = Not beneficial to 5 = Essential with 3 = No opinion

Participants reported their professional development needs regarding career pathways based on the impact of the community setting. The Natural Resources pathway (p =. 049) indicated significant differences based on the community setting. Table 7 displays the needs for professional development based on the community type.

Table 7
Needs for Professional Development in Career Pathways Based on the Community Type

Note. 1 indicates a scale used from 1 = Not beneficial to 5 = Essential with 3 = No opinion

Conclusions & Implications

This study aimed to investigate the professional development needs of teachers in the national career pathways in agricultural education. The divisions of gender and years of experience do not represent a generalizable representation of each state regarding the professional development needs of agriculture teachers. Participants in this study were from six states in the Southeastern United States. Most respondents were female, with the largest group having teaching experience between 11-20 years. Respondents were experienced and prepared mainly for their teaching career through traditional means.

Participants were asked to indicate their professional development needs regarding technical content in the seven career pathways. Based on the findings, we concluded that professional development was most needed in the specialized content area of plant science, followed closely by animal systems. Meanwhile, we also conclude that the least beneficial areas for professional development were Power, Structural & Technical Systems, and Food Products & Processing Systems. Concerning Power, Structural & Technical Systems, the findings are inconsistent with the results of similar studies (Easterly & Myers, 2019; Smalley et al., 2019) that have reported a significant gap in teacher preparation in this area. However, we conclude from our findings that teachers do not perceive technical training in Power, Structural & Technical Systems to be a significant need.

Further conclusions evoked through this research population werethat no differences exist between male and female teachers regarding their technical in-service training needs, with two exceptions. More males than females found the need for training in natural resources and power and technical systems. Further, teachers with less than 10 years of teaching experience need more training in animal science than their more experienced counterparts. This is consistent with the teacher development model developed by Fessler and Christensen (1992). The only significant difference among respondents for this research objective was that rural teachers rated natural resources training higher than their urban counterparts. We found that teachers in rural schools were more likely to require training on natural resources. This could result from rural teachers’ access to more natural resources and, therefore, more opportunities to teach this content area than a teacher in an urban setting.

Recommendations for Future Research

Based on the conclusions from this study, this study should be replicated in other regions of the United States to gain a clearer picture of the professional development needs of agricultural education teachers. Agriculture operations vary across the United States due to climate, arable land, geography, and access to infrastructure that supports markets and transportation. The teachers in one region may have different professional needs from those in another. This study should be replicated in the future to determine if teacher training needs have changed. The agriculture industry uses human ingenuity and innovation to power new and better methods for producing food, fiber, and natural resources. Consequently, agricultural educators must be well-equipped to educate students using innovative technology.

This study found differences between male and female teachers in power, structural and technical systems, and natural resources. Additional research in this area may help determine why these differences exist. Furthermore, we noted differences between new and experienced teachers concerning animal science. This begs the question as to whether Inservice training needs should be customized based upon the years of experience. Researchers should conduct follow-up studies to determine if this would benefit teachers.

References

Advance CTE. (2018). Agriculture, food & natural resources. Agriculture, Food & Natural Resources. https://careertech.org/Agriculture

Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., Norman, M. K., & Mayer, R. E. (2010). How learning works: Seven research-based principles for smart teaching. Jossey-Bass.

Baruch, Y. (1999). Response rate in academic studies – A comparative analysis. Human Relations, 52(4), 421–438. https://doi.org/10.1177/001872679905200401

Bolkan, S., & Goodboy, A. K. (2009). Transformational leadership in the classroom: Fostering student learning, student participation, and teacher credibility. Journal of Instructional Psychology, 36(4), 296–306. https://eric.ed.gov/?id=EJ952280

Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research. SAGE Publications.

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. SAGE Publications.

Croom, B. (2009). The effectiveness of teacher education as perceived by beginning teachers in agricultural education. Journal of Southern Agricultural Education Research, 59, 1-13. http://jsaer.org/pdf/Vol59/2009-59-001.pdf

Darling-Hammond, L., Chung, R., & Frelow, F. (2002). Variation in teacher preparation: How well do different pathways prepare teachers to teach? Journal of Teacher Education, 53(4), 286–302. https://journals.sagepub.com/doi/pdf/10.1177/0022487102053004002

Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). Effective teacher professional development. Learning Policy Institute.

Dean, C. B., & Marzano, R. J. (2012). Classroom instruction that works: Research-based strategies for increasing student achievement. ASCD

Dillman, D. A., Smyth, J. D., & Christian, L. M. (2014). Internet, phone, mail, and mixed-mode surveys: The tailored design method (4th edition). Wiley.

Driel, J. V. (2021). Developing science teachers’ pedagogical content knowledge. Brill. https://doi.org/10.1163/9789004505452_001

Easterly, R. G., & Myers, B. E. (2019). Professional development engagement and career satisfaction of agriscience teachers. Journal of Agricultural Education, 60(2), 69–84. https://doi.org/10.5032/jae.2019.02069

Edgar, D. W. (2012). Learning theories and historical events affecting instructional design in education: Recitation literacy towards extraction literacy practices. Sage Open, 2(4), 1–9. https://journals.sagepub.com/doi/pdf/10.1177/2158244012462707

Fessler, R., & Christensen, J. C. (1992). The teacher career cycle: Understsnding and guiding the professional development of teachers. Allyn and Bacon.

Figland, W., Roberts, R., & Blackburn, J. J. (2020). Reconceptualizing problem-solving: Applications for the delivery of agricultural education’s comprehensive, three-circle model in the 21st Century. Journal of Southern Agricultural Education Research, 70(1), 1–20. http://jsaer.org/wp-content/uploads/2021/01/Volume-70-Full-Issue.pdf#page=35

Finn, A. N., Schrodt, P., Witt, P. L., Elledge, N., Jernberg, K. A., & Larson, L. M. (2009). A meta-analytical review of teacher credibility and its associations with teacher behaviors and student outcomes. Communication Education, 58(4), 516–537. https://doi.org/10.1080/03634520903131154

Forde, C., & McMahon, M. (2019). Teacher quality, professional learning and policy: Recognising, rewarding and developing teacher expertise. Palgrave Macmillan. https://doi.org/10.1057/978-1-137-53654-9

Fraze, S. D., Hardin, K. K., Brashears, M. T., Haygood, J. L., & Smith, J. H. (2003). The effects of delivery mode upon survey response rate and perceived attitudes of Texas agriscience teachers. Journal of Agricultural Education, 44(2), 27–37. https://doi.org/10.5032/jae.2003.01027

Gess-Newsome, J., Taylor, J. A., Carlson, J., Gardner, A. L., Wilson, C. D., & Stuhlsatz, M. A. M. (2019). Teacher pedagogical content knowledge, practice, and student achievement. International Journal of Science Education, 41(7), 944–963. https://doi.org/10.1080/09500693.2016.1265158

Harris, J. B., & Hofer, M. J. (2011). Technological pedagogical content knowledge (TPACK) in Action: A descriptive study of secondary teachers’ curriculum-based, technology-related instructional planning. Journal of Research on Technology in Education, 43(3), 211–229. https://doi.org/10.1080/15391523.2011.10782570

Hume, A., Cooper, R., & Borowski, A. (Eds.). (2019). Repositioning pedagogical content knowledge in teachers’ knowledge for teaching science. Springer Singapore. https://doi.org/10.1007/978-981-13-5898-2

Levine, S. (2008). School lunch politics: The surprising history of America’s favorite welfare program. Princeton University Press.

Lindner, J. R., Murphy, T. H., & Briers, G. E. (2001). Handling nonresponse in social science research. Journal of Agricultural Education, 42(4), 43–53. https://doi.org/10.5032/jae.2001.04043

Marzano, R. J. (2017). The new art and science of teaching. Solution Tree Press.

National Research Council (U.S) (Ed.). (2010). Preparing teachers: Building evidence for sound policy. National Academies Press.

Orlich, D. C., Harder, R. J., Callahan, R. C., Trevisan, M. S., & Brown, A. H. (2012). Teaching strategies: A guide to effective instruction. Cengage Learning.

Roberts, R., Stair, K. S., & Granberry, T. (2020a). Images from the trenches: A visual narrative of the concerns of agricultural education majors. Journal of Agricultural Education, 61(2), 324–338. https://doi.org/10.5032/jae.2020.02324

Roberts, R., Wittie, B. M., Stair, K. S., Blackburn, J. J., & Smith, H. E. (2020b). The dimensions of professional development needs for secondary agricultural education teachers across career stages: A multiple case study comparison. Journal of Agricultural Education, 61(3), 128–143. https://doi.org/10.5032/jae.2020.03128

Senthamarai, S. (2018). Interactive teaching strategies. Journal of Applied and Advanced Research, 3(1), 36–38. https://doi.org/10.21839/jaar.2018.v3iS1.166

Solomonson, J. K., & Roberts, R. (2022). Organizing and administering school-based agricultural education systems and the FFA. In A. C. Thoron & R. K Barrick (Eds.)., Preparing agriculture and agriscience educators for the classroom (pp. 17-34). IGI Global.

Smalley, S., Hainline, M., & Sands, K. (2019). School-based agricultural education teachers’ perceived professional development needs associated with teaching, classroom management, and technical agriculture. Journal of Agricultural Education, 60(2), 85–98. https://doi.org/10.5032/jae.2019.02085

Talbert, B. A., Croom, B., LaRose, S., Vaughn, R., & Lee, J. S. (2022). Foundations of agricultural education (4th ed.). Purdue University Press.

Walshaw, M. (2012). Teacher knowledge as fundamental to effective teaching practice. Math Teacher Education, 15, 181–185. https://doi.org/10.1007/s10857-012-9217-0

Yopp, A., Edgar, D., & Croom, D. B. (2020). Technical in-service needs of agriculture teachers in Georgia by career pathway. Journal of Agricultural Education, 61(2), 1–19. https://doi.org/10.5032/jae.2020.02001

Investigating Science Efficacy Before and After a Professional Development Program focused on Genetics, Muscle Biology, Microbiology, and Nutrition

Jesse Bower, Fresno State, jessebower@csufresno.edu

Bryan A.  Reiling, University of Nebraska-Lincoln, breiling2@unl.edu

Nathan W. Conner, University of Nebraska-Lincoln, nconner2@unl.edu

Christopher T. Stripling, University of Tennessee, cstripli@utk.edu

Matthew S. Kreifels, University of Nebraska-Lincoln, matt.kreifels@unl.edu

Mark A. Balschweid, University of Nebraska-Lincoln, mbalschweid2@unl.edu

PDF Available

Abstract

This study investigated teachers’ levels of Personal Science Teaching Efficacy (PSTE) and Science Teaching Outcome Expectancy (STOE) using the Science Teaching Efficacy Beliefs Instrument (STEBI). The population included 10 teachers completing an Increasing Scientific Literacy through Inquiry-Based Professional Development in Genetics, Muscle Biology, Microbiology, and Nutrition. Assessments were made at two points. First, the participants were assessed by using a pretest followed up by a posttest 12 months later after implementing the new curriculum. The teachers experienced gains during the professional development on both their personal science teaching efficacy and their science teaching outcome expectancy. However, the mean differences were not statistically significant. Results of this study indicate that the Increasing Scientific Literacy through Inquiry-Based Professional Development may be used as a tool to increase PSTE and STOE in agricultural educators and science teachers.

Introduction/Theoretical Framework

In the 2020-2021 school year, the Nebraska student-centered assessment in the area of science indicates that only 50% of high school students meet the science expectation (Nebraska Department of Education, 2022). The lack of science proficiency is not surprising given the statistics from 2017 indicating students’ proficiency gradually decreases between 5th grade, 8th grade, and 11th grade (Nebraska Department of Education, 2017). In 2017, 28% of 5th graders were below proficient, 32% of 8th graders were below proficient, and 39% of 11th graders were below proficient (Nebraska Department of Education, 2017). Proficiency scores indicate that science efficacy needs to be addressed at all grade levels, but specifically at the high school level. Based on research and theory, it is determined that outcome expectancy (OE) and science efficacy (SE) are complementary factors in determining the success of teachers in a science-based classroom. (Stripling & Roberts, 2013)

Teacher self-efficacy relates to progressive teaching behaviors and positive student outcomes. Therefore, the social cognitive theory serves as the theoretical framework for this study. The social cognitive theory identifies the capabilities of humans, and their purposeful intentions, that can and will affect their course of action (Bandura, 1977, 1997). This process is called triadic reciprocal causation and was developed by Albert Bandura (1977, 1997). Triadic reciprocal causation suggests three interrelated factors that mutually impact people: environmental, behavioral, and personal factors (Bandura, 1977, 1997). These three factors determine what a person believes about themselves and aide in their decision-making process (Bandura, 1977, 1997). Triadic reciprocal causation advocates that no one single factor determines a person’s behavior, instead, it is the combination of all three factors (Bandura, 1977, 1997). When determining OE and SE, behavior could be predicted (Bandura, 1997) and efficacy beliefs help dictate motivation (Maehr & Pintrich, 1997; Pintrich & Schunk, 1996). Self-efficacy theory helps outline what motivates a person (Graham & Weiner, 1996), and so, the theory can be applied to any behavioral task and predict what will take place.

In the teacher efficacy belief literature, two dimensions of teacher self-efficacy, including Teaching Efficacy (Outcome Expectancy) and Personal Teaching Efficacy (Self- Efficacy), have been defined and utilized in subsequent studies. Several studies suggest that teacher efficacy beliefs may account for individual differences in teacher effectiveness (Armor et al., 1976; Berman & McLaughlin, 1977; Brookover et al., 1978; Brophy & Evertson, 1981). Student achievement has also been shown to be significantly related to teacher efficacy beliefs (Ashton & Webb, 1983). The measurement of Personal Teaching Efficacy has been used to predict teacher behavior with accuracy (Ashton et al., 1983).

Teachers’ content knowledge affects student learning (Ballou & Podgursky, 1999; Ma, 1999; Podgursky, 2005); therefore, science teachers are expected to be highly qualified in the subject area in which they teach. Not only do teachers need to have a high level of comprehension in the content area, but they also need to display passion and enthusiasm. Additionally, standardized tests, only prove that students can memorize and focus on the content because the performance goals measured only address low levels of learning (Meece et al., 2006).

Teacher self-efficacy has also been connected to beginner agriculture teachers’ pledge to the teaching career (Knobloch & Whittington, 2003). Teaching efficacy is a more specific type of self-efficacy (Stripling & Roberts, 2013; Stripling et al., 2008), and is a teacher’s belief in their competence to facilitate the learning environment and produce desired learning results (Guskey & Passaro, 1994; Soodak & Podell, 1996). Beginning teachers who are more efficacious tend to have a greater obligation to teaching than those who are not as efficacious and consequently are more motivated to remain in the teaching profession (Whittington et al., 2003). In fact, beginner teachers could have an exaggerated sense of self-efficacy because of their student teaching experience (Knobloch, 2006).

This professional development program utilized inquiry-based learning as the main instructional approach. There have been numerous studies that show inquiry-based learning is an effective method for teaching science (Keys & Bryan, 2001). Inquiry-based learning requires students to manage their own learning and their success will be based on their engagement in the lesson through active listening and problem solving. Inquiry-based learning opportunities provide the foundation for students to make observations, pose questions, compare evidence, predict outcomes, and communicate research results (National Research Council, 2000).

Purpose/Objectives

The purpose of this study was to determine the teachers’ level of science efficacy in the agricultural education and science classrooms and compare the results as the teachers progressed through the yearlong professional development. The modified science teaching efficacy scale (based on Enochs & Riggs, 1990) consists of both personal science teaching efficacy (PSTE) and science teaching outcome expectancy (STOE).

Objectives include:

  1. Investigate secondary life science teachers’ personal science teaching efficacy (PSTE) within the sciences before and after the Increasing Scientific Literacy through Inquiry-Based Professional Development in Genetics, Muscle Biology, Microbiology, and Nutrition.
  • Investigate secondary life science teachers’ science teaching outcome expectancy (STOE) before and after the Increasing Scientific Literacy through Inquiry-Based Professional Development in Genetics, Muscle Biology, Microbiology, and Nutrition.

Two null hypotheses were used to guide this inquiry:

H01: There is no significant difference in the personal science teaching efficacy (PSTE) of life science teachers before and after the Increasing Scientific Literacy through Inquiry-Based

Professional Development in Genetics, Muscle Biology, Microbiology, and Nutrition treatment.

H02: There is no significant difference in the science teaching outcome expectancy (STOE) of life science teachers before and after the Increasing Scientific Literacy through Inquiry-Based

Professional Development in Genetics, Muscle Biology, Microbiology, and Nutrition treatment.

Methods/Procedures

Professional Development

This professional development (PD) program provided an opportunity for high school agricultural education teachers and science teachers to participate in a 12-month long PD. Applicants were encouraged to join the program with both a science and agriculture teacher from their school. The purpose of this was to bridge the gap between agriculture and science disciplines. After applications were submitted, there were not enough paring entries from all the same schools, so science and agriculture teachers were coupled from different schools (N = 10). For this study, the participants will be referred to as life science teachers. Applicants were recruited in the Spring of 2017. The project was divided into three phases.

Phase I

The PD program began in summer 2017 with a one-day workshop that took place at three different locations throughout Nebraska. The workshop introduced information centered around how students learn, more specifically, experiential learning, short-term and long-term memory, Bloom’s taxonomy, and learning styles. From there, the inquiry-based learning teaching method was introduced. All learning activities that were developed and used in this PD incorporated inquiry-based learning and allowed teachers to experience learning activities as students.

Basic scientific disciplines including biology, chemistry, and mathematics are interrelated in the growth and development of living beings.  For this reason, scientific units of study that focused on the Scientific Principles of Food Animal Systems were developed. The following units were included:

  1. Genetics
  2. Growth & Development / Chemistry of Muscle Biology

3)   Microbiology of Food Safety

4)   Physiology and Chemistry of Nutrition

Each unit provided basic content knowledge, hands-on inquiry-based learning activities, and student reflection instruments.  Content knowledge included educational videos and PowerPoint slides that could be used to introduce high school students to the topic and provided the scientific basis of the topic and related activities. Instructional materials also included a listing of necessary supplies and equipment, ordering information, and easy-to-follow instructions.  For those secondary life science educators that participated in the PD, selected supplies that would not normally be present in a typical high school science laboratory were provided to facilitate the small-group student learning activities. 

Finally, through inquiry-based learning, it is imperative that high school students be asked to reflect upon what they’ve just learned; to evaluate the results and to project how those results might relate to new situations or scenarios (Kolb, 1984).  To facilitate this final component of inquiry-based learning, instruments were developed to encourage high school students to reflect upon what they just learned and how that new knowledge may be applied to different situations in the future. Scientific principles related to genetics, muscle biology, microbiology, and nutrition were used to demonstrate a hands-on, inquiry-based learning pedagogy. 

Phase II

The program continued throughout the 2017-2018 academic year. Conference calls through Zoom, a video conferencing platform, took place in August and December of 2017, and April of 2018. The calls were used to discuss how life science teachers were implementing the prescribed learning activities that focused on genetics, muscle biology, microbiology, and nutrition.

Phase III

Life science teachers were placed in small teams and asked to develop additional inquiry-based learning activities that were presented during the final PD session in June of 2018. Each team was assigned a specific unit (genetics, muscle biology, microbiology, or nutrition) to focus their efforts.  The overall purpose of this activity was to help life science teachers learn how to develop their own inquiry-based learning activities and share their activities with a broader audience.

Data Collection

Quantitative methods were used to determine the change in teachers’ science teaching efficacy by using a modified science teaching efficacy scale (based on Enochs & Riggs, 1990). The instrument used for data collection was created by Enochs and Riggs (1990) to measure the self-efficacy of science teachers, called the Science Teaching Efficacy Belief Instrument (STEBI). Additionally, the data collected for this study was part of a larger data set.

The STEBI consisted of 23 questions scaled from 1 (strongly disagree) to 5 (strongly agree). Terminology was adjusted by researchers to accommodate for high school teachers instead of preservice elementary science teachers. Example questions from Enochs and Riggs (1990) include “I will continually find better ways to teach science,” “The inadequacy of a student’s science background can be overcome by good teaching,” “The low science achievement of some students cannot generally be blamed on their teachers,” and “When a low achieving child progresses in science, it is usually due to extra attention given by the teacher.”

The STEBI (Enochs & Riggs, 1990) is comprised of two scales that measure the constructs personal science teaching efficacy (PSTE) and science teaching outcome expectancy (STOE).

All items use a 5-point rating scale (1 = strongly disagree to 5 = strongly agree). The following item was modified from Enochs and Riggs (1990) by removing the word elementary: “I understand science concepts well enough to be effective in teaching elementary science.”

Additionally, Enochs & Riggs (1990) stated reliability analysis produced Cronbach’s alpha coefficients of .90 for PSTE and .76 for STOE. Post-hoc reliabilities for PSTE and STOE were .799 and .732, respectively. These measures of internal-consistency are acceptable given the nature of the constructs and present reliabilities on comparable measures (Ary et al., 2014).

Data Analysis

Data were analyzed using IBM SPSS version 20. Descriptive statistics (i.e., frequencies, percentages, and means) were used to describe the science teaching efficacy data. Additionally, based on Haynes and Stripling (2014) and Dossett et al. (2019), low, moderate, and high self-efficacy was defined as 1.00 to 2.33, 2.34 to 3.67, and 3.68 to 5, respectively. Data was summarized using descriptive statistics (i.e., frequencies, percentages, and means). Paired samples t-tests were utilized to determine if a significant difference existed in science teaching efficacy and outcome expectancy (OE).

The STEBI contains 23 items in the survey and 13 are designed to address science teachers’ level of belief that they can teach science (Personal Science Teaching Efficacy or PSTE) and 10 assess the respondents’ belief that their teaching will have a positive effect on the students they are teaching (Science Teaching Outcome Expectancy or STOE). Paired t-tests were run on the pre and post survey scores for the PD. The PSTE and STOE section, scores were analyzed separately. Therefore, all analyses of group mean differences were done as two tailed tests.

Results/Findings

The first and second objectives were to investigate the level of PSTE/STOE of the professional development participants before and after the PD. During the first phase of the study teachers reported before the PD, they had a mean personal science teaching efficacy (PSTE) score of 3.83 (SD = .27) and an outcome expectancy (OE) of 3.35 (SD = 0.48). The second phase conducted after the 12-month PD teachers reported an increase in both areas with a mean PSTE of 3.95 (SD = 0.33) and an OE of 3.47 (SD = 0.47).

Means and analysis results for the surveys are presented in Table 1 and Table 2. Analysis of surveys from the PD indicated no significant pre/post shifts on PSTE or STOE scores, however there were small actual mean differences.

Table 1

Personal Science Teaching Efficacy Scores 

LowModerateHigh
MSDf%f%f%
Pretest3.830.2700.0330.0770.0
Posttest3.950.4800.0110.0990.0
Note. 1.00 to 2.33 = low efficacy, 2.34 to 3.67 = moderate efficacy, 3.68 to 5 = high efficacy.

Table 2

Science Teaching Outcome Expectancy Scores 

  LowModerateHigh
 MSDf%f%f%
Pretest3.350.4800.0660.0440.0
Posttest3.480.4700.0660.0440.0
Note. 1.00 to 2.33 = low efficacy, 2.34 to 3.67 = moderate efficacy, 3.68 to 5 = high efficacy.

The mean differences between the pre and post teaching efficacy scores for PSTE and STOE are in Table 3. Analysis revealed a .11-point increase in PSTE, a .13-point increase in the STOE. However, the mean differences were not statistically significant. Thus, the null hypotheses were not rejected.

Table 3

Summary of Paired Samples t tests

 Mean differenceSDSEtp
PSTE posttest – pretest.11.20.061.79.11
STOE posttest – pretest.13.51.16.79.45

Conclusions/Recommendations/
Implications

The purpose of administering the modified STEBI (based on Enochs & Riggs, 1990) was to investigate teachers’ level of science efficacy in the agricultural education and science classrooms and compare the results as the teachers progressed through the professional development.Personal science teaching efficacy (PSTE) slightly increased from pre and posttest and science teacher outcome expectancy (STOE) also changed during the PD.

Analysis revealed a .11-point increase in PSTE, and a .13-point increase in STOE. However, the mean differences were not statistically significant. Thus, the null hypotheses were not rejected. Results of this study indicate that the Increasing Scientific Literacy through Inquiry-Based Professional Development program may be used as a tool to increase PSTE and STOE in life science teachers. Professional development opportunities focused on teaching science through inquiry-based learning could be a way to increase science efficacy (SE) and outcome expectancy (OE) over time. If professional development workshops could continually increase SE and OE, the SE and OE could be used to help determine teacher success in a science-based classroom, thus aligning with Stripling and Roberts’ (2013) assertion that OE and SE can be used to determine teacher success. Teacher educators should purposefully design teacher professional development programs to allow teachers to practice their science teaching skills, thus providing an opportunity for the teacher to increase their SE and OE. To align with Kolb (1984), the professional development should be designed to have purposeful reflection activities that allows the teachers to critically examine their ability and confidence when teaching science concepts.

We found life science teachers in this study to be moderately efficacious in their ability to teach science concepts before and after the conclusion of the PD. However, 20% of the life science teachers in this study moved from moderate to high efficacy with PSTE. According to Bandura (1997), self-efficacy influences behavior. Thus, theoretically, being highly efficacious in PSTE should positively impact the teaching of contextualized science in school-based agricultural education and science programs; on the other hand, being moderately efficacious may negatively impact the teaching of contextualized science. Additionally, educating life science teachers in technical science content aligns with Ballou and Podgursky, 1999, Ma, 1999, and Podgursky, 2005 assertion that teachers content knowledge impacts student learning. Therefore, we recommend the continuation of professional development programming that aims to increase technical content knowledge. Providing in-depth technical content knowledge should allow the teachers to increase their confidence because they will have a better understanding of the technical content and will feel more comfortable teaching the technical content in the classroom. It is important to note that the small sample size limits the generalizability of the findings.

Future research should be conducted to determine why approximately an equal number of teachers are moderately or highly efficacious in PSTE and determine if moderate self-efficacy negatively impacts the teaching of contextualized science. In regard to science teaching outcome expectancy, a majority of the life science teachers were moderately efficacious in STOE. Theoretically, being moderately efficacious in STOE may negatively impact the teaching of contextualized science. The said research will also aid the planning of professional development for agricultural education and science teachers and can be used to guide experiences offered in agricultural and science teacher education programs.

References

Armor, D., Conroy-Osequera, P., Cox, M., King, N., McDonnel, L., Pascal, A., Pauley, E., & Zellman, G. (1976). Analysis of the school Preferred readiness programs in selected Los Angeles minority schools (R-2007-LAUSD). Rand Corp.

Ary, D., Jacobs, L. C., Sorensen, C. K., & Walker, D. A. (2014). Introduction to research in education (9th ed.). Wadsworth.

Ashton, P., Webb, R., & Doda, C. (1983). A study of teachers’ sense of efficacy (Final Report, Executive Summary). Gainesville: University of Florida.

Ballou, D., & Podgursky, M. (1998). The case against teacher certification. The Public Interest.

Bandura, A. (1977). Social learning theory. Prentice Hall.

Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman.

Berman, P. & McLaughlin, M. (1977). Federal Programs supporting educational change: Vol. 7. Factors affecting implementation and continuation (R-1589/7-HEW). Rand Corporation.

Brookover, V. B., Schweitzer, J. J., Schneider, J. M., Beady, C. H., Flood, P. K., & Wisenbaker, J. M. (1978). Elementary school social climate and school achievement. American Educational Research Journal, 15(2), 301-318.

Brophy, J. & Evertson, C. (1981). Student characteristics and teaching. Longman.

Dossett, J., Stripling, C. T., Haynes, C., Stephens, C. A., & Boyer, C (2019). Mathematics efficacy and professional development needs of Tennessee agricultural education teachers. Journal of Agricultural Education, 60(4), 255-271. https://doi.org/10.5032/jae.2019.04255

Enochs, L. G., & Riggs, I. M. (1990, April 8–18). Further development of an elementary science teaching efficacy belief instrument: A preservice elementary scale. [Paper presentation].

National Association for Research in Science Teaching, Atlanta, GA, united States.

Graham, S., & Weiner, B. (1996). Theories and principles of motivation. Berliner.

Gusky, T. R., & Passaro, P.D. (1994). Teacher efficacy: A study of construct dimensions. American Educational Research Journal,31, 627-643.

Keys, C. W., & Bryan, L. A. (2001). Co-constructing inquiry-based science with teachers: Essential research for lasting reform. Journal of research in science teaching, 38(6), 631- 645. https://doi.org/10.1002/tea.1023

Knobloch, N. A. (2006). Exploring relationships of teachers’ sense of efficacy in two student teaching programs [Electronic Version]. Journal of Agricultural Education, 47(2), 36-47. https://doi.org/10.5032/jae.2006.02036

Knobloch, N. A., & Whittington, M. S. (2003). Differences in teacher efficacy related to career commitment of novice agriculture teachers. Journal of Career and Technical Education, 20(1), 87-98. https://doi.org/10.21061/jcte.v20i1.625

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Prentice Hall. 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Lawrence Erlbaum Associates.

Maehr, M., & Pintrich, P. R. (1997). Advances in motivation and achievement (Vol. 10). JAI Press.

Meece, J. L., Anderman, E. M., & Anderman, L. H. (2006). Classroom goal, structure, student motivation, and academic achievement. Annual Review of Psychology, 57, 487-503. http://doi.org/10.1146/annurev.psych.56.091103.070258.

National Research Council. (2000). Inquiry and the national science education standards: A guide of teaching and learning. National Academy Press.

Nebraska Department of Education. (2022). Launch Nebraska- Science. https://www.launchne.com/20-21/covid-19-special-report/.

Nebraska Department of Education. (2017). Nebraska State Accountability (NeSA)- Science. http://nep.education.ne.gov/State?DataYears=20162017.

Podgursky, M. (2005). Teaching licensing in U.S. pubic schools: The case for age simplicity and flexibility. Peabody Journal of Education, 80, 15-43.

Stripling, C. T., & Roberts, T. G. (2013). Investigating the Effects of a Math-Enhanced Agricultural Teaching Methods Course, Journal of Agricultural Education, 54(1), 124–138. https://doi.org/10.5032/jae.2013.01124

Soodak, L. C., & Podell, D. (1996). Teacher efficacy: toward the understanding of a multi-faceted con- struct. Teaching and Teacher Education, 12(4), 401-411.

Pintrich, P. R., & Schunk, D. H. (1996). Motivation in education: Theory, research, and applications. Merrill/Prentice Hall.

Haynes, J. C., & Stripling, C. T. (2014). Mathematics Efficacy and Professional Development Needs of Wyoming Agricultural Education Teachers. Journal of Agricultural Education55(5), 48-64. http://doi:10.5032/jae.2014.05048

Stripling, C., Ricketts, J. C., Roberts, T. G., & Harlin, J. F. (2008). Preservice agricultural education teachers’ sense of teaching self-efficacy. Journal of Agricultural Education, 49(4), 120-130. http://doi:10.5032/jae.2008.04120

Whittington, M. S., McConnell, E. A., & Knobloch, N. A. (2003). Teacher efficacy of novice teachers in agricultural education at the end of the school year. Proceedings of the 30th Annual National Agricultural Education Research Conference, Orlando, FL, 204-215.

Implications of Pandemic Responses for Extension Education and Outreach

Samuel Quinney, Clemson Extension, squinne@clemson.edu
Grace Greene, Clemson University, mgg2@g.clemson.edu
Christopher J. Eck, Oklahoma State University, chris.eck@okstate.edu
K. Dale Layfield, Clemson University, dlayfie@clemson.edu
Thomas Dobbins, Clemson University, tdbnns@clemson.edu

PDF Available

Abstract

As part of daily tasks of Cooperative Extension, agents handle public issues by offering programming by approved methods to inform the public. Within the context of this study, a mixed-methods approach was established to determine the factors impacting behaviors associated with Clemson Extension, programming efforts, and roles during the COVID-19 pandemic. Understanding the attitudes and perceptions of Extension educators and key stakeholders (i.e., advisory committee members), researchers, faculty, and Extension educators can be better prepared to face future challenging while continuing to meet the public demand. This exploratory, mixed methods inquiry investigated the perceptions of current Clemson Extension agents across South Carolina and Extension advisory committee members related to the ongoing COVID-19 pandemic and Extensions response. To meet the needs of this mixed methods approach, qualitative interviews were conducted with Extension agents and a survey questionnaire was utilized to collect pertinent data from Extension advisory committee members. Through this study, strengths and challenges for South Carolina Cooperative Extension Agents during the COVID-19 pandemic were learned, providing a framework in the event of similar challenges in the future. Adaptability is key moving forward for Extension, as it allows Extension agents to meet the needs in their communities, serve their primary stakeholder groups, and improve overall perceptions of what they offer. Extension professionals should consider the findings as a starting point to evaluate the current state of Extension programming and how to best move forward to address pertinent agricultural issues.

Introduction/Theoretical Framework

“The pace of innovation in the agriculture-related, health, and human sciences demands that knowledge rapidly reaches the people who depend on it for their livelihoods” (USDA-NIFA, 2021, para. 1). Specifically, the Clemson Cooperative Extension (2021) service aims to “improve the quality of life of all South Carolinians by providing unbiased, research-based information through an array of public outreach programs in youth development; agribusiness; agriculture; food, nutrition and health; and natural resources” (para. 1). The normal day to day operations of Clemson Extension was brought to a halt on March 18th, 2020, after the World Health Organization (2020) declared the Novel Coronavirus or COVID-19, a global pandemic on March 11, 2020.

As part of daily tasks of Cooperative Extension, agents handle public issues by offering programming by approved methods to inform the public (Dale & Hahn, 1994; Patton & Blaine, 2001). Most issues originate as private concerns and become public when outside agencies become involved and widespread support or opposition is gained. This is often related to an identifiable problem, whereas others may arise from misinformation or inaccurate perceptions (Patton & Blaine, 2001). These contentious issues often create situations in which public input and education can be keys to solving the problem; however, due to the highly charged nature of such issues, many leaders tend to avoid them (Jolley, 2007; Patton & Blaine, 2001; Rittel & Webber, 1973). Clemson extension has always made it a priority to provide relevant programming to address these public issues.

During today’s societal changes of the COVID 19 Pandemic, agricultural communities have faced challenges. According to the United States Department of Agriculture (USDA) Economic Research Service (ERS) (2021), the total number of cash receipts by commodity has remained steady, with some commodities increasing between the years 2020 and 2021. Animals and animal products increased just under $8.6 billion, and crops increased just over $11.8 billion via cash receipts reported by the USDA-ERS (2021). Some of these increases in consumer purchases have come through governmental policies, which increased American agriculture commodity purchases from foreign countries under the US and China trade deal. China will purchase and import $40 billion dollars’ worth of American agriculture products including meat goods (McCarthy, 2020), others came from a decrease in store availability, though no nationwide shortages have been reported (USDA, 2021). Though the total cash receipts have improved nationally, local agriculture producers face a distinct set of issues. Such issues include a misinformed public, slaughterhouse backups, and a lack of land availability. However, the agricultural cash receipts have yet to be reported for South Carolina according to the USDA-ERS (2021).

Clemson Extension was not alone, as schools, businesses and government agencies across the U.S. adapted to limit in-person contact (CDC, 2020). Extension agents had to cancel some scheduled programming and events and shift what they could to virtual platforms, such as Zoom, which has been identified as easy-to-use and engaging (Robinson & Poling, 2017). With the pandemic catching most off-guard, little account was taken into the perceptions, attitudes, and beliefs of Clemson Extension agents and advisory groups. To frame the evaluation of these concerns, the theory of planned behavior (Ajzen, 1991) was implemented (see Figure 1).

Figure 1

Ajzen’s (1991) Theory of Planned Behavior Model

The theory of planned behavior (Ajzen, 1991) “provides a useful conceptual framework for dealing with the complexities of human social behavior” (p. 206), as it provides a frame to outline the predictability of an individual’s future plans and behaviors (Ajzen, 1991). The theory of planned behavior has further been implemented (Murphrey et al., 2016) to evaluate one’s perceptions and/or intentions related to formal and informal training (i.e., Extension programming). Within the context of this study, a mixed-methods approach was established to determine the factors (i.e., attitude toward the behavior, subjective norms, and perceived behavioral control) impacting behaviors associated with Clemson Extension. Specifically, programming efforts (i.e., attitudes), roles (i.e., norms), issues (i.e., attitude and perceived control), and solutions (i.e., intentions) were addressed to establish best practices learned from the COVID-19 pandemic. Understanding the attitudes and perceptions of Extension educators and key stakeholders (i.e., advisory committee members) allows researchers, faculty, and Extension educators to be better prepared to face future challenges while continuing to meet the current public demand.

Purpose and Research Objectives

During today’s societal changes, Clemson Extension has expanded its role to provide education to the public through virtual and other non-contact options. Therefore, this study aimed to determine the perceptions of Clemson Extension agents and the prevalent issues faced within the agriculture community in the South Carolina by interviewing Extension agents and surveying Clemson Extension advisory committee members. Four research questions were developed to guide this study:

  1. Describe the current perceptions of Clemson Extension agents amidst the COVID-19 pandemic.
  2. Identify the greatest issues facing agriculture in South Carolina according to advisory committee members during the COVID-19 pandemic?
  3. Determine current and potential solutions from Clemson Extension to address the issues faced during the COVID-19 pandemic.
  4. Create a list of preferred programs and program delivery methods for future Extension programming.

Methods

This exploratory, mixed methods inquiry investigated the perceptions of current Clemson Extension agents across South Carolina (N = 154) and Extension advisory committee members (N = 64) related to the COVID-19 pandemic and Extensions response. To meet the needs of this mixed methods approach, qualitative interviews were conducted with Extension agents (n = 6) and a survey questionnaire was utilized to collect pertinent data from Extension advisory committee members.

Qualitative Inquiry Procedures

As with most qualitative inquiries, this study sought to provide rich information from the Extension agents as they adapt with the changing dynamics of the pandemic. A purposive sampling strategy was implemented to reach data saturation amongst the variety of agents across the state. This sampling method included soliciting participation from agents from all five regions and 10 program teams, resulting in interviews with six agents representing five program teams and all five regions spanning 15 counties, as some agents work in multiple counties. For proper tracking of data, each participating agent was provided a pseudo name that is outlined in Table 1.

Table 1

Clemson Extension Agents Who Participated in the Study (n = 6)

Pseudo Name Sex Region Program Team 
Shawn Male Region 4 Horticulture 
Abigail Female Region 1 4-H Youth Development 
Violet Female Region 5 Livestock & Forages 
Leonard Male Region 3 Forestry & Wildlife 
Keith Male Region 4 Agronomic Crops 
Taylor Male Region 2 Horticulture 

To address the overarching research objective of the qualitative inquiry, a flexible interview protocol was established spanning four topic areas, including: 1) Accessibility and program impacts; 2) Responding in a time of crisis; 3) Remote instruction and distance education; and 4) Economic and communication concerns early in the COVID-19 pandemic. Each topic area included probing questions to help facilitate conversation, helping to uncover the specific paradigm being studied. Glesne (2016) identifies the specific paradigm or reality being evaluated within this study as an ontology, as the study aimed to discover and individuals’ beliefs associated with their current reality, further connecting to the theory base (Ajzen, 1991) as we try to uncover future intentions. The interview protocol was checked for face and content validity (Salkind, 2012) by two faculty members with teaching and research experience in Extension education and research methodology. All six interviews were conducted by an undergraduate student minoring in Extension education following the interview protocol for consistency. Additionally, a fieldwork notebook was compiled by the interviewer to document the interview experiences through observation notes, interview notes, and reflexive thoughts (Glesne, 2016).

The interviews were conducted using Zoom due to the ongoing COVID-19 pandemic and University regulations. The interviews were recorded and transcribed using features embedded in the Zoom platform, which were then compared against one another for accuracy. In addition to the interview recordings and transcriptions, interviewer notes were used for triangulation of data. To further increase the trustworthiness of the study, the research team followed the recommendations of Privitera (2017) to establish credibility, transferability, dependability, and confirmability within the study. Creditability was addressed through coding member checks across the research team to reduce bias (Creswell & Poth, 2018) along with triangulation of data and saturation of emerging categories (Privitera, 2020). To enhance transferability the researchers described the participants (including pseudonyms), detailed the interview and data analysis process, and highlighted the perspectives of the participants. Procedural explanations and data triangulation furthered the dependability of the research (Creswell & Poth, 2018; Privitera, 2020), and a reflexivity statement was included to describe any inherent biases associated with then phenomenon (Privitera, 2020).

Confirmability refers to the objectivity of the findings and the ability to interpret the narrative of the experience of participants to determine the essence of the phenomena instead of the researcher’s bias (Creswell & Poth, 2018; Privitera, 2020). A reflexivity statement describes the researchers previous understanding of the phenom

To analyze the interview transcripts through a qualitative lens, this study implemented the constant comparative method (Glasser & Strauss, 1967), which permits the data to speak for itself, allowing themes to emerge. The first round of coding used open-coding sources, allowing themes to emerge through the process (Creswell & Poth, 2018). Axial coding was followed for second-round coding, where the relationships between open codes resulted in overarching categories (Creswell & Poth, 2018; Glasser & Strauss, 1967). Round three of coding was selective coding, where the researchers determined the core variables from the qualitative interviews.

The purposive sampling provides a limiting factor as only six Clemson Extension agents were interviewed for the purpose of this study. Therefore, the findings of this study are limited to the views of the participants and not necessarily that of all agents in the state, but the findings of the study can be used to inform practice, guide future research, and potentially offer state-wide implementations based on needs. The research team recommends caution when looking to generalize the data, although the data has transferable qualities if the readers deem the population and situations identified as germane to their inquiry.

Within a qualitative inquiry, Palaganas et al. (2017) recommends for researchers to acknowledge any inherent bias and reveal their identify to offer reflexivity. The research team consisted of two faculty members in agricultural education at Clemson, a current Extension educator, and an undergraduate student pursuing a minor in extension education. The faculty members have more than 30 years of experience combined in agricultural and extension education. We recognize our bias toward Extension because of our faculty roles and have attempted to harness that bias through a consistent interview protocol, interviewer, and extensive field notes.

Survey Research Procedures

This non-experimental descriptive survey research component aimed to reach Clemson Extension advisory committee members (N = 64) in Abbeville, Anderson, Greenville, Oconee, and Pickens counties in South Carolina. The counties selected to participate in the survey were selected for their vast differences, including suburban, rural agriculture/homesteads, small towns, and large cities. The populations of the participating counties were Greenville – 507,003; Anderson – 198,064; Pickens – 124,029; Oconee – 77,528, and Abbeville – 24,627 (United States Census Bureau, 2021).

The questions addressed in this study were designed to assess how the Clemson Cooperative Extension Service adapted during the COVID 19 pandemic. Survey questions were divided into three categories, 1) Agricultural issues, 2) Extension programming, and 3) Participant demographics. The agricultural issues category elicited open ended responses to determine the greatest issues facing agriculture and what Clemson Extension is and can do to help the issues. The second category aimed to determine the preferred program delivery methods and primary program teams of interest. The researcher-developed survey was reviewed for face and content validity by Agricultural Education faculty and Clemson Extension professionals.

Of the 64 advisory members who received the survey via email, 27 responded, resulting in a 42.2% response rate. Participants were 55.6% male and 44.4% female and ranged in age from 29 to 73 years old, with agricultural involvement varying from pre-production/production agriculture to agricultural consumers (see Table 2) across the five counties. Data was analyzed using SPSS Version 27 to address the proposed research questions.

Table 2

Personal and Professional Demographics of Extension Advisory Committee Members in South Carolina (n = 27).

Demographics   f %
Gender Male 15 55.6
  Female 12 44.4
  Prefer not to respond 0 0.0
Age 21 to 30 1 3.7
  31 to 40 5 18.5
  41 to 50 3 11.1
  51 to 60 8 29.6
  61 to 70 4 14.8
  70 or older 6 22.2
  Did not respond 0 0.0
 Current Role in Agriculture Pre-Production  7.4 
Production1452.9
Consumer1037.03
 Did not respond 1 3.7

Findings

Research Question 1: Describe the current perceptions of Clemson Extension agents amidst the COVID-19 pandemic.

The emerging codes, themes, and categories were used to explain the perceptions of Clemson Extension agents related to the ongoing COVID-19 pandemic. Four overarching categories emerged from the findings.

Category 1: Extension is Adaptable

 Keith stated, “we’re used to getting things thrown in our lap, everybody in the world or everybody in the country says, you have any questions call your county extension agent,” which reinforced this concept. When considering the COVID-19 pandemic, Keith went on to say, “as far as agronomy agents and a lot of the horticulture agents, we’ve never quit visiting farmers, when they call, we go.” The changes caused by the pandemic looked different across the state, depending on the needs of community, which was encompassed through the thoughts of Extension professionals “adapting every single day and the pandemic just made it a big step, as opposed to little steps. We just had to figure out a way to continue to do what we’re already doing, just in a different format” (Leonard). Other interviews built upon these same lines of thought to demonstrate the overall adaptability of Clemson Extension.

Category 2: Need for Training and Resources

The greatest need indicated across the interviews was specific training and resources to help Extension professionals and constituents navigate the pandemic. Keith simply stated that “everybody’s been putting out fires and handling their own problems … and I think some help and some guidance with all our delivery programs would be great.” Abigail further identified “a big chunk of people who are probably [her] age and younger and then a couple of older ones who … are more traditional, who need some help.” The participants identified specific training needs for agents across the state related to Zoom, virtual programming, and mental health of both adults and youth, “because as the times change, new stuff comes up.” Additional resources were also discussed by participants as many Extension professionals “live out in the middle of nowhere and Internet does not come to [their] house” (Shawn), requiring them to work of a limited data hot spot, when the data is gone, they are without internet. Participants also expressed a need for computers “that can handle Zoom,” so they can utilize Zoom features and provide essential programming to constituents. The final resource need is for the community members Extension professionals aim to reach, as many farmers and ranchers struggle to engage using technology, which Leonard explained that “it’s not necessarily that they can’t do it, a lot of them just don’t have the ability. Your rural areas just don’t have computers.”

Category 3: Community Perceptions

Perceptions of the communities Extension professionals serve was expressed by Violet as, “we’ve been at this so long, I wonder about our relevance… I’m still making farm visits, but a lot of people think we’re closed.” Similarly, Taylor struggled “going from what we normally do and being the face of the public and the face of the university to everything [moving] online, was tough. The biggest struggle was getting over the hill of convincing yourself that this is the way it’s going to be and then having to convince clientele that this is the way it’s going to be for a little while.” The change in delivery was difficult for all involved and many are concerned with the impact of the pandemic on the relationship between the Extension professional and the clientele moving forward. Which, Violet expressed as her “greatest concern, is how to bring those people back and have them trust us again and know that we’re still working, we’re still here and we still deserve to be paid, that sort of thing. I’ve heard all those things so that’s probably what I’m worried about the most.”

Category 4: Reluctancy to New Methods

Violet explained that “certainly the Zoom capabilities are good, but there’s been some reluctance to use them from our older crowd, and, unfortunately most farmers are 65 and older.” She went on to express the hardships as “it’s been a little bit hard to pull them [older farmers] in and get them to really feel connected. They like our meetings for the information side of it, but also the community feel, and I think you do lose a little bit of that with the virtual sense or virtual realm.” In contrast, Taylor found a positive side to the new methods as “we’re reaching a lot more people, especially on our side of the team that probably wouldn’t normally come to a meeting because they can just jump on a computer now.” But he also went on to explain the reluctance as “a majority of our clientele is older, the Zoom thing is tough for them, the technology piece is tough… We picked up a lot of clients… but we probably have some frustrated clients because of it.”

Research Question 2: Identify the greatest issues facing agriculture in South Carolina according to advisory committee members during the COVID-19 pandemic?

The second research question focused on determining the greatest issue(s) currently facing the agricultural industry in South Carolina. Of the 27 respondents, two primary issues arose, the cost/lack of agricultural inputs and outputs, and the need for local produce and meat products. Table 3 outlines underlying issues that make up those broader categories.

Table 3

Greatest Issues Facing South Carolina Agriculture (n = 27)

CategorySpecific Issues
Cost/Lack of Agricultural Inputs and OutputsLand, Seed, Feed, Fertilizer, Chemicals; Slaughter Facilities
 Increased Cost due to Urban Sprawl; Market Fluctuations
Need for Local Produce and Meat productsCOVID Restrictions; Farmers Market and Open-Air Markets Closed

Research Question 3: Determine current and potential solutions from Clemson Extension to address the issues during the COVID-19 pandemic.

The third research question addressed the current and potential solutions Clemson Extension is currently providing or could provide to address issues in agriculture. Table 4 outlines the current solutions being offered, although 14.8% of respondents felt that nothing was currently available. The two current solutions include agricultural education and agricultural land loss prevention. Specifically, agricultural education represents the Making It Grow programming offered through South Carolina Educational Television (SCETV), information provided by the Home Garden Information Center (HGIC), 4-H youth development programming, and Extension programs/Education. The second solution to currently assist agriculturalists is the agricultural land loss prevention program focused on agricultural land easements offered through the USDA-NRCS office.

Table 4

Solutions Available for Current Agricultural Issues (n = 27)

Current SolutionsSpecific Program/Offering
Agricultural EducationMaking it Grow
 HGIC
 4-H Youth Programming
 Extension Programs/Education
Agricultural Land Loss PreventionAgricultural Land Easements-NRCS

In addition to current programs, respondents’ ideas for potential solutions were of interest to the research team. Respondents identified two categories of solutions, the first being to publicize Extension programs and services better, so the public have a better understanding of what Extension does and what is being offered. The second solution was an increase in agricultural education, specifically targeting small farms and farming for-profit programs, additionally youth education opportunities, along with specific education programming highlighting the historical importance of agricultural land and keeping that land in agricultural production. Much of this was connected to 56% of respondents identifying COVID-19 as having a specific impact on agriculture in the state. Specifically, one of the greatest concerns was the impact of virtual programming during the COVID-19 pandemic, as many individuals did not have access to virtual programming due to lack of technology or internet. A potential option that was presented was being sure to offer recorded (asynchronous) programming options versus the live (synchronous) options currently available.

Research Question 4: Create a list of preferred programs and program delivery methods for future Extension programming.

The final objective aimed to establish the preferred program delivery methods for future extension programming, along with current and future program interests. Table 6 outlines the preferred information delivery method of respondents.

Table 6

Preferred Information Delivery Method (n = 27)

Delivery Methodf%
Email933.3
Office Visits622.2
No Preference622.2
Farm Visits13.7
Phone13.7
Text Updates13.7
Fact Sheets13.7
Postal Mail13.7
Social Media13.7

In addition, 55.6% of participants said they would be willing to participate in future virtual programming if offered, while 22.2% of participants said they would not participate, and the remaining 22.2% were unsure. To further understand programmatic interests, participants were asked to identify which of the Clemson Extension Program teams had provided the most information during the pandemic, Table 7 outlines their responses.

Table 7

Programmatic Teams Offering the Most Programming During COVID 19

Program Teamf%
4-H725.9
Unknown622.2
Forestry and Wildlife414.8
Agricultural Education311.1
Horticulture311.1
Food Systems and Safety27.4
Livestock and Forages13.7
Rural Health and Nutrition13.7

Although 4-H was reported as the program team providing the most programming during the pandemic, participants expressed the most interest in more programming from the forestry and wildlife team (33.3%), followed by the agricultural education and livestock and forages teams, both with 26% of the respondents interested. The agribusiness team (22.2%) and the horticulture team (18.5%) rounded out the top five. The remaining program areas had less than 14% of participants interested.

Conclusions, Implications, and Recommendations

Through this study, strengths and challenges for South Carolina Cooperative Extension Agents during the COVID-19 pandemic were learned, providing a framework in the event of similar challenges in the future. As identified in the category one finding, “Extension is Adaptable,” discussed how agents continued to meet their constituent’s needs, but through use of many creative means. a benefit that will aide Cooperative Extension Agents is the ability to adapt quickly. This ability to adapt would support those aspects in the category two findings which identified a need for training/in-service of Cooperative Extension Agents and their constituents. Category three, “Community Perceptions,” is reflective of the anxiety and uncertainty that was commonly experienced during the pandemic. Shifts in time and locations of workplace during the pandemic created a variety of uninformed interpretations of staff labor and confusion among the clientele base. Category four, “Reluctancy to New Methods” was commonly thought to be a challenge, but during the pandemic, it became widely know that there are gaps in technological competencies. Altough Extension agents had negative perceptions about certain components of their ability to provide appropriate education and outreach to constituent groups, their overall intentions were positive leading to actionable behaviors (Ajzen, 1991) that made an impact in their communities and states.

According to the advisory committee members in this study, there are two primary issues (i.e., attitudes; Ajzen, 1991) facing agriculture (i.e., cost or lack of agricultural inputs and outputs and the need for local produce and meat products) in South Carolina. The first issue can be contributed to the availability of land due to urban sprawl as well as all input costs having significantly increased in spring 2021. Additionally, slaughter facilities have been waitlisted for the last year due to high demand for American meat products. The area of concern can be considered together with the first due to slaughterhouses being backed up, local meat producers are unable to get their product finished out and packed for sale. Open air markets and farmers have been under the mercy of local and federal government’s restrictions, which have limited or cancelled all opportunities for local produce to be made available (L. Keasler, personal communication, 2021). Although these issues are of concern, Extension has the opportunity to address some of them by providing timely and accurate information to those who need it most. This allows the agents to control what they can through communication, reducing the negative perception and informing stakeholders if the subjective norms (Ajzen, 1991) currently impacting agricultural production.

Extension can work with local producers to ensure that they are in contact with their local and state representatives to be made aware of the issues that American agriculturalists are facing in today’s environment. Extension can also provide more agricultural education to the general consumer to assist our agricultural producers in informing the community what issues they face to maintain their livelihood. Some things cannot be controlled, such as market fluctuations and processing facilities operation. However, agents can make public representatives aware of the issues, asking them to push these issues in front of our elected legislative bodies to enact change through governmental policies. According to Anderson and Salkehatchie counties Cattlemen’s Association members and meat producers (personal communication, January 12, 2021), the availability of funds to build more USDA certified handling facilities would increase the speed at which products can be made available to markets, as well as increase jobs in areas where these facilities are housed. Perhaps, inputs such as fertilizers and herbicides can be regulated by government to avoid price gouging when they are needed the most, making the big companies richer and the hard-working farmers pockets tighter to continue to make a living in production agriculture.

Local fruit and vegetable producers face a slightly different issue in that they are at the mercy of local, state, and federal mandates, only operating at full capacity when they are told it is safe to do so (L. Keasler, personal communication, 2021). Similarly, Extension is subject to these same mercies, although we have seemed to reach a new normal, the findings of this study can be beneficial for Clemson Extension and similar Extension agencies in other states.

The implications support the Theory of Planned Behavior (Ajzen, 1991), as agents recognized that they could adapt to meet the needs of their constituents during time of many unknowns and countless challenges demonstrates how favorable attitudes and intentions result in adaptable behaviors. These behaviors include the awareness of need for additional training and to seek resources to meet needs. Paradoxically, the resistance of many constituents to accept alternative programming methods presented opposing behaviors from the agents, creating additional challenges. Regardless, adaptability is key moving forward for Extension, as it allows Extension agents to meet the needs in their communities, serve their primary stakeholder groups, and improve overall perceptions of what they offer. Although it should be noted that many of the factors impacting Extension during the COVID-19 pandemic were outside of the Extension agents’ control, ultimately impacting the perceived behavioral control the agents had on situations (Ajzen, 1991).

Considering recommendations for Extension professionals, a need exists to better publicize programs and services offered from the county offices to increase awareness and community participation. This can be done through local news organizations such as newspapers, radio stations, social media, and news channels. Although the pandemic has provided its share of challenges, the increased availability for virtual programming has some benefits, such as being able to reach a broader audience across the state who previously never participated in Extension programming. Moving forward it is recommended that Extension consider ways to offer programming in-person and virtually to continue to expand the diversity of people being reach for programming. Perhaps, with a collaborative effort Clemson Extension could make a greater impact on the future of agriculture across the state, as agriculture makes an impact on everyone’s daily life. Extension professionals should consider the findings as a starting point to evaluate the current state of Extension programming and how to best move forward to address pertinent agricultural issues.

Realizing the conclusions and implications addressed in this study, it is recommended that Cooperative Extension Services consider the following actions:

  1. Initiate an assessment of State Cooperative Extension Service staff to develop a comprehensive guide on best management practices in the event of future events of the magnitude experienced from the COVID-19 pandemic;
  2. Develop a series of in-service offerings on communications tools for delivery of online programming, provided at different skills levels;
  3. Coordinate with agencies that provide professional development in awareness of mental health issues and recommended practices and resources available, and
  4. Establish a review team of IT experts for the Cooperative Extension Service that will develop a standard protocol to assure that technologies (laptops, scanners, etc.) needed for online delivery and required Internet access will be available for staff to successfully complete their programming remotely as needed.

References    

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision 
            process, 50
(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Centers for Disease Control and Prevention (CDC). (2020). Situation summary. https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/summary.html

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry & research design: Choosing among five approaches (4th ed.). Sage.

Dale, D. D., & Hahn, A. J. (Eds.). (1994). Public issues education: Increasing competence in resolving public issues. University of Wisconsin.     

Glasser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine.

Glesne, C. (2016). Becoming qualitative researchers: An introduction (5th ed). Pearson.

Hamilton, S. F., Chen, E. K., Pillemer, K., & Meador, R. H. (2013). Research use by cooperative extension educators in New York State. Journal of Extension, 51(3). http://www.joe.org/joe/2013june/pdf/JOE_v51_3a2.pdf

Murphrey, T. P., Lane, K., Harlin, J., & Cherry, A. L. (2016). An examination of pre-service agricultural science teachers’ interest and participation in international experiences: Motivations and barriers. Journal of Agricultural Education, 57(1), 12-29. https://doi.org/10.5032/jae.2016.01012 

Robinson, J., & Poling, M. (2017). Engaging participants without leaving the office: Planning and conducting effective webinars. Journal of Extension, 55(6). https://joe.org/joe/2017december/tt9.php

Rumble, J. N., Lamm, A. J., & Gay, K. D. (2018). Identifying Extension Agent Needs Associated with Communicating about Policies and Regulations. Journal of Agricultural Education, 59(4), 72–87. https://doi.org/10.5032/jae.2018.04072

Jolley, J. (2007). Choose your doctorate. Journal of Clinical Nursing, 16(2), 225–233. https://doi.org/10.1111/j.1365-2702.2007.01582.x

Palaganas, E. C., Sanchez, M. C., Molintas, M. P., & Caricativo, R. D. (2017). Reflexivity in qualitative research: A journey of learning. The Qualitative Report, 22(2), 426–438. https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=2552&context=tqr

Patton, D. B., & Blaine, T. W. (2001). Public issues education: Exploring extension’s role. Journal of Extension, 39(4). http://joe.org/joe/2001august/a2.html

Privitera, G. J. (2017). Research methods for the behavioral sciences (2nd Ed.).Sage.

Rasmussen, J. L. (1989). Data transformation, type I error rate and power. British Journal of Mathematical and Statistical Psychology, 42(2), 203–213. https://doi.org/10.1111/j.2044-8317.1989.tb00910.x

Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sci, 4, 155–169. https://doi.org/10.1007/BF01405730

Rogers, E. (2003). Diffusions of Innovations (5th ed.). Free Press.

Salkind, N. J. (2012). Exploring research (8th ed.). Prentice Hall.

United States Census Bureau. (2021). South Carolina counties by population. https://www.SouthCarolina-demographics.com/counties_by_population              

United States Department of Agriculture National Institute for Food and Agriculture (USDA-NIFA). (2021). Cooperative extension system. https://nifa.usda.gov/cooperativeextension-system

Clemson Cooperative Extension. (2021). Cooperative Extension. https://www.clemson.edu/extension/about/index.html

World Health Organization (WHO). (2020). Coronavirus disease 2019 (COVID-19) situationreport–51. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf’sfvrsn=1ba62e57_10

           

Everyday People in Agriculture: Our Voices, Our Concerns, Our Issues

Chastity Warren

Dr. Chastity Warren English, Professor of Agriscience Education at North Carolina A&T State University, presented the 2023 Distinguished Lecture at the Southern Region Conference of the American Association for Agricultural Education in Oklahoma City, Oklahoma. Dr. Warren English’s talk focused on the importance of diversity, equity, inclusion, and belong in agricultural education and allied sectors while also highlighting her lived experiences in the discipline. She also illuminated the concerns of her students in an 1890 Land-grant University context. This article is a philosophical work based on her distinguished lecture…

Read More

Assessing Undergraduate Needs Within Online Learning Management Systems in Colleges of Agriculture

Christopher A. Clemons
The internet has served as the basis for online learning for the past 30 years. Learning management systems have become a primary focus of public and private universities as the next generation of college students expect open and unfettered access to their education. The purpose of this Delphi Study was to investigate the instructional needs of undergraduate agriculture students enrolled in online learning environments at a midwestern College of Agriculture. Two research questions guided this investigation, (1) what are the essential components for an effective undergraduate online learning management system and (2) what are stakeholder perceptions of learning management system design, development, coursework, and design themes? Using the Delphi Model for consensus an undergraduate panel (N = 10) was convened to identify the vital components for learning management systems which addressed instructional design, application of course content, and student collaboration education within online learning platforms…

Read More

The Perceived Impact of Life Experiences and Selected Growth Areas Upon the Employability Preparation of Land-Grant College Graduates

Chastity Warren English, Chantel Simpson, & Antoine J. Alston
The purpose of this study was to analyze the perceived impact of life experiences and selected growth areas upon the employability preparation of land-grant college graduates, as observed by employers. The study revealed that a variety of life experiences and experiential learning opportunities, in general, are significant for career success for land-grant college graduates. Further, participants reported that many trends would influence the agricultural industry over the next five to 10 years, such as Digital Agriculture (Precision Agriculture or Big Data), Research and Development, Agricultural Technology, Engineering, and Mechanization, Environment, Globalization, and selected Agribusiness related themes. Recommendations included Land-Grant Colleges considering curriculum and program revisions concerning these trend areas, to better prepare graduates to be future change agents within the global food, agriculture, and renewable natural resources fields.

Read More

Organizational leadership: A philosophical review and proposed model

Kevan W. Lamm, Hannah S. Carter, Alexa J. Lamm, & Nekeisha Randall
Organizational leadership is the foundation of success for mission-driven systems of all sizes. Leading an organization in today’s society requires adaptive and relational skills that meet the demands of complex and changing environments. There is a need for a theoretically-based model specifically designed for organizational leadership. The purpose of this article was to address this gap by proposing a model of organizational leadership that expands upon previous recommendations in the literature and specifically identifies 11 areas synthesized from previous taxonomic recommendations. The organizational leadership conceptual model should provide agricultural leadership educators with a robust framework for the development of adaptive leaders and contextually appropriate leadership curriculum.

Read More

Recruiting Minority Students into Secondary School Agriculture Education Programs: Barriers, Challenges, and Alternatives

K. S. U. Jayaratne, Travis Park, & Jason Davis
The United States population is becoming increasingly diverse, and agricultural education should represent that diversity. Researchers conducted a Delphi study of 12 exemplary agriculture programs with diverse student populations in North Carolina. After three rounds, consensus was reached about 11 strategies useful in recruiting minority students, including most prominently, (1) making personal connections with potential students, (2) students recruiting their minority friends, (3) minority students recruiting other minority students, (4) showcasing exceptional minorities who have succeeded in the agriculture field, and (5) being yourself and care for your students. The study also identified 12 alternatives helpful in retaining the minority students into another agriculture course or FFA, most prominently, (1) buying-in from friends, (2) talking to minority students already in the program, (3) building teacher and student relationship, (4) creating interest in agriculture subjects, and (5) getting minority students connected and involved.

Read More

Knowledge, Skills, and Competencies Needed by Students with Training in Agricultural and Environmental Practices as Perceived by Local Leaders: A Delphi Study

Sarah Sapp, Andrew C. Thoron, & Eric D. Rubenstein
The purpose of this study was to examine the knowledge, skills, and competencies needed by high school students with coursework in agricultural and environmental practices as perceived by educators and industry members. This study utilized a true Delphi technique in order to obtain the perceptions of the respondents. Respondents indicated 122 items that were important for students to possess with coursework in this area. The top 83 items were reported based upon panel members’ perceived importance of these items. There were three major themes or categories of importance identified by the panel members, which include: life/leadership skills, core subject area knowledge, and competence in production agriculture knowledge/practices…

Read More

Climbing Jacob’s Ladder: A Phenomenological Inquiry to Understand Ugandan Farmers’ Experiences Using Fertilizers

Chandler Mulvaney, Kathleen D. Kelsey, Nicholas E. Fuhrman, & Ronald Lemo
This article examines factors influencing Ugandan subsistence farmers’ adoption or rejection of mineral fertilizers using the theory of planned behavior as a theoretical lens (Ajzen, 2011). We conducted semi-structured interviews with 30 Ugandan farmers in-situ. Participants were criterion selected based on their rate of adoption of fertilizers and membership in farmer groups. We analyzed the interviews following phenomenological research design. Four themes emerged, they were (a) we are better together, working in farmer groups improves outcomes, (b) behavioral change begins within the family and farmer groups, (c) farmers need greater access to agricultural production knowledge and inputs, and (d) changes in farmers’ knowledge leads to intentional behavior changes. The themes were summarized to generate the phenomenological essence of climbing Jacob’s ladder. The factors that influenced fertilizer adoption included being a member of a formally recognized and registered farmer group…

Read More